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1 Introduction

This tutorial shows how sampling theory from statistics can be used to estimate the total Soil
Organic Carbon (SOC) stock for an area, or to estimate the change in total SOC stock for
an area between two points in time. Sampling theory requires a probability sample from the
area of interest and uses so-called design-based statistical inference. This has the important
advantages that the estimates are unbiased, model-free (i.e., makes no model assumptions),
and that the estimation accuracy can be quantified. The latter is for instance important to
derive confidence intervals and evaluate whether an estimated increase or decrease of the SOC
stock over time is ‘real’ and statistically significant.

The tutorial explains the underlying theory but the emphasis is on practical application using
a concrete example and the R language for statistical computing. The tutorial provides all R
scripts and datasets for the example area.

We developed this tutorial such that it should not be difficult to adapt it to other case studies,
thus supporting the verification step of Monitoring, Reporting and Verification (MRV) projects.
More information on MRV for SOC and other aspects of sampling for SOC stock changes is
available in Ceschia et al. (2025).

We assume that users of the tutorial have basic knowledge of statistics, geo-information science
and basic experience with R. Note that we also assume that R and required packages have
been installed (version 4.4.3 or higher).



2 Soil organic carbon stock of an example area

In this chapter we introduce the example area that is used throughout the tutorial. We present
a map of the soil organic carbon (SOC) stock of the area, and explore how the total SOC stock
of this area can be estimated with simple random sampling.

All calculations are shown in code chunks, which should be run in the order as presented. We
explain the most relevant aspects of the functions used, but we encourage the user to consult
the documentation and experiment with the script by making small modifications or extensions
to support a better understanding.

The setup lines below are necessary for the code chunks in this chapter to run. Therefore, we
define them at the beginning of the script.

Setup

In this chapter we will only use functions from the terra package.

# load library
library(terra)

R automatically prints large numbers in scientific notation. We prefer, however, to have
numbers printed in standard notation. To avoid scientific notation, we adjust the scipen
(“scientific penalty”) option. By setting it to 999, we essentially force standard notation.

# avoid scientific notation
options(scipen=999)

The tutorial makes use of a pseudo-random number generator. To encourage reproducible
research we set the seed of this generator, so that anyone running this script gets the
same results.

# set a seed (for reproducible research)
set.seed(12345)

Numeric results of calculations are often rounded, but since R does not print trailing
zeros by default, we wrap the rounding in a number formatting function.




# x is the number, d the intended number of decimals
# p is the precision to round the number to the nearest factor
# for example, when x=87.8904, d=1 and p=1 returns "87.9"
# for example, when x=33745.5, d=0 and p=100 returns "33700"
round2 <- function(x, d, p = 1){

p <- px(107-d)

n <- round(x/p)*p

format (n, nsmall = d)

}

We selected a rectangular study area in the north-east of the Netherlands, shown in Figure 2.1.
The rectangle measures 4.8 km by 4.3 km. The main land use is agriculture (cropland and
grassland) on clay soils.
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Figure 2.1: Study area (red rectangle).

1 The bounding box was defined in EPSG:28992 (Amersfoort / RD New) to match
the coordinate system of the input data. When reprojected to WGS84 (EPSG:4326)
for visualization in Leaflet, the rectangle may appear rotated or skewed. This is a
harmless visual effect caused by the transformation from a planar to a geographic
coordinate system. All calculations in this tutorial are performed in EPSG:28992, so
the distortion does not affect the analysis.

In order to take a random sample from the example area and use this sample of SOC stock



point observations to estimate the ‘true’ SOC stock of the area, as well as evaluate how close
this estimate is to the ‘true’ SOC stock of the area, we need to know the SOC stock everywhere
in the area. For the aims of this tutorial we therefore created a SOC stock synthetic reality
raster. It is important to be aware that in reality we of course would not know the SOC stock
at each and every location in a study area. While we need a map of the ‘true’ SOC stock for
the purposes of this tutorial, obviously sampling theory works well and is in fact intended for
cases where such information is not available.

The primary data source for simulation of a synthetic SOC stock raster is Helfenstein et al.
(2024), which provides high-resolution soil property grid maps, including soil organic matter
(SOM) and bulk density (BD) maps. We first combined the SOM and BD maps to derive
SOC stock maps for the 0 — 5 ¢m , 5 — 15 ¢m and 15 — 30 c¢m depth layers, summed these
to obtain SOC stock maps for the 0 — 30 ¢m topsoil, and finally added zero-mean spatially-
correlated residuals using geostatistical simulation. Residuals were added to acknowledge that
the 0 — 30 em SOC stock map derived from the maps provided in Helfenstein et al. (2024) is
only a smoothed representation of the true SOC stock.

We load the SOC stock map from the [SRIC WebDAV.

Load data

# load raster from ISRIC WebDAV

url_folder <- "https://files.isric.org/public/tutorials/soc_stock_change/input/"
raster_fn <- "soc_stock_2020.tif"

soc <- rast(pasteO(url_folder, raster_fn))

Plot raster

# plot soc stock raster
plot(soc, main = "topsoil SOC stock",
plg = list(title = "ton/ha"))
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Figure 2.2: Topsoil SOC stock map of the example area, at 25m x 25m resolution. This
map defines the ‘reality’ from which we will sample.

To calculate the SOC stock for the example area we average all grid cell values and multiply
by the size of the area. Note that there are NA values in the rectangle shown in Figure 2.2 (i.e.,
houses and farm buildings). These cells are not part of the target area and must therefore be
removed from the calculation.

Total area

# terra::expanse() returns the area covered by all non-NA raster cells

area_ha <- expanse(soc, unit = "ha")[1, "area"]
# print
pasteO("Area: ", round2(area_ha, 2), " ha")

[1] "Area: 2057.93 ha"




‘True’ SOC stock

# calculate the mean soc stock across the non-NA pixels (ton/ha)
mean_stock <- global(soc, fun = "mean", na.rm=TRUE) [1, "mean"]

# multiply the mean SOC stock (ton/ha) by area (ha) to get the total SOC stock (tomn)
tot_stock <- mean_stock * area_ha

# print
pasteO("'True' SOC stock: ", round2(tot_stock, O, 10), " ton")

[1] "'True' SOC stock: 248390 ton"

This is 248.4 Gg (Gigagram). Feel free to check in R that since the size of the area without
NA cells is 2057.9 ha, the mean SOC stock is 120.7 ton/ha.

In reality, we do not know the SOC stock at all locations in the area and so we cannot calculate
it. At best we can make an estimate of it, by measuring the SOC stock at a limited number of
locations and multiplying the mean of these SOC stock measurements by the size of the study
area. For instance, we might randomly select 50 locations and estimate the total SOC stock,
as follows:

Case 1

sample 50 non-NA locations as spatial points. In spatSample(),
when as.points = TRUE, it converts the ampled cells into

spatial points using xyFromCell(), which by default returns the
cell centroid. When values = TRUE, raster cell values are returned
random_sample <- spatSample(soc, size = 50, method = "random",
as.points = TRUE, values = TRUE,

na.rm = TRUE)

H H H

# plot
plot(soc, main = "Random sample of 50 locations, case 1", cex.main = 1,
plg = list(title = "ton/ha", title.cex = 0.8, cex = 0.8))
plot(random_sample, pch = 21, cex = 1,
col = "black", bg = "orange", add = TRUE)
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Figure 2.3: Random sample of 50 locations in the example area (case 1).

# select the first column, which contains the extracted soc stock values
random_sample <- as.data.frame(random_sample) [[1]]

# compute the mean soc stock for the sampling locations (ton/ha)
sample_mean <- mean(random_sample)

# total soc stock in the study area computed from the sample mean
tot_stock_estimate_1 <- sample_mean * area_ha

# print
paste0("Total SOC stock estimate 1: ", round2(tot_stock_estimate_1, 0, 10), " ton")

[1] "Total SOC stock estimate 1: 245860 ton"

This is only an estimate of the total SOC stock based on 50 observations. There is an esti-
mation error, which we can quantify because we know the true SOC stock of the area:

Case 1




# calculate the estimation error
error_1 <- tot_stock_estimate 1 - tot_stock

# print
pasteO("Estimation error 1: ", round2(error_1, O, 10), " ton")

[1] "Estimation error 1: -2530 ton"

This shows that we underestimated the total SOC stock in the area by 2528.0 ton. Clearly,
if we had sampled 50 other locations we would get a different estimate and estimation error.
Let us now repeat the estimation procedure above four times to get a feel for the magnitude
and sign of the estimation error:

Case 2

# sample 50 non-NA locations as spatial points

random_sample <- spatSample(soc, size = 50, method = "random",
as.points = TRUE, values = TRUE,
na.rm = TRUE)

# plot
plot(soc, main = "Random sample of 50 locations, case 2", cex.main = 1,
plg = list(title = "ton/ha", title.cex = 0.8, cex = 0.8))
plot(random_sample, pch = 21, cex = 1,
col = "black", bg = "orange", add = TRUE)
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Random sample of 50 locations, case 2
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Figure 2.4: Random sample of 50 locations in the example area (case 2).

# select the first column, which contains the extracted soc stock values
random_sample <- as.data.frame(random_sample) [[1]]

# compute the mean soc stock for the sampling locations (ton/ha)
sample_mean <- mean(random_sample)

# total soc stock in the study area computed from the sample mean
tot_stock_estimate_2 <- sample_mean * area_ha

# check
pasteO("Total SOC stock 2: ", round2(tot_stock_estimate_2, 0, 10), " ton")

# calculate the estimation error
error_2 <- tot_stock_estimate_ 2 - tot_stock

# print
pasteO("Estimation error 2: ", round2(error_2, 0, 10), " ton")
[1] "Total SOC stock 2: 276870 ton"

[1]

"Estimation error 2: 28490 ton"
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Case 3

# sample 50 non-NA locations

random_sample <- spatSample(soc, size = 50, method = "random",
as.points = FALSE, values = TRUE,
na.rm = TRUE)

# when we set as.points = FALSE, spatSample() returns a data frame

# select the first column, which contains the extracted soc stock values
random_sample <- random_sample[[1]]

# compute the mean soc stock for the sampling locations (ton/ha)
sample_mean <- mean(random_sample)

# total soc stock in the study area computed from the sample mean
tot_stock_estimate_3 <- sample_mean * area_ha

# check
paste0("Total SOC stock 3: ", round2(tot_stock_estimate_3, 0, 10), " ton")

# calculate the estimation error
error_3 <- tot_stock_estimate 3 - tot_stock

# print
pasteO("Estimation error 3: ", round2(error_3, O, 10), " ton")

[1] "Total SOC stock 3: 241330 ton"
[1] "Estimation error 3: -7060 ton"

Case 4
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# sample 50 non-NA locations

random_sample <- spatSample(soc, size = 50, method = "random",
as.points FALSE, values = TRUE,
na.rm = TRUE)

# when we set as.points = FALSE, spatSample() returns a data frame

# select the first column, which contains the extracted soc stock values
random_sample <- random_sample[[1]]

# compute the mean soc stock for the sampling locations (ton/ha)
sample_mean <- mean(random_sample)

# total soc stock in the study area computed from the sample mean
tot_stock_estimate_4 <- sample_mean * area_ha

# print
paste0("Total SOC stock 4: ", round2(tot_stock_estimate_4, 0, 10), " ton")

# calculate the estimation error
error_4 <- tot_stock_estimate 4 - tot_stock

# print
pasteO("Estimation error 4: ", round2(error_4, O, 10), " ton")

[1] "Total SOC stock 4: 240150 ton"
[1] "Estimation error 4: -8230 ton"

Case 5
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# sample 50 non-NA locations

random_sample <- spatSample(soc, size = 50, method = "random",
as.points = FALSE, values = TRUE,
na.rm = TRUE)

# when we set as.points = FALSE, spatSample() returns a data frame

# select the first column, which contains the extracted soc stock values
random_sample <- random_sample[[1]]

# compute the mean soc stock for the sampling locations (ton/ha)
sample_mean <- mean(random_sample)

# total soc stock in the study area computed from the sample mean
tot_stock_estimate_b5 <- sample_mean * area_ha

# print
paste0("Total SOC stock 5: ", round2(tot_stock_estimate_5, 0, 10), " ton")

# calculate the estimation error
error_5 <- round((tot_stock_estimate 5 - tot_stock), 1)

# print
pasteO("Estimation error 5: ", round2(error_5, O, 10), " ton")

[1] "Total SOC stock 5: 235000 ton"
[1] "Estimation error 5: -13380 ton"

It appears that the estimation error can be positive as well as negative and that its magnitude
varies between cases, and is far from negligible. The absolute value of the five estimation errors
had a maximum of 28490 ton, which is 11.5 % of the total SOC stock. Ideally we would like to
know how large the estimation error is expected to be for a given sample size. Can anything
be said about this, even if we have only a single sample of 50 observations? And how much
smaller would the estimation error on average be if we had taken a larger sample (for instance
100 instead of 50 random locations)? If we could answer these questions we would be able
to determine how large a sample we must take to achieve a pre-defined required estimation
accuracy.

It is important to note that above we could only compute the estimation error for each case
because we ‘knew’ the true SOC stock of the area. In reality we do not know it, and cannot
calculate the actual estimation error. In fact, all we have in reality is a single estimate of the
true SOC stock, based on the one random sample that we took. Can we tell how accurate the
estimate is, even if we do not know the true SOC stock and have a single random sample? Can
we derive a confidence interval for the true SOC stock based on this sample? Can we quantify
how estimation accuracy depends on sample size? These are important questions that can all

14



be answered affirmatively, with the help of sampling theory from statistics.

The next chapters provide a concise explanation of the basics of sampling theory, and applies
this theory to our example case.

15



3 Sampling theory

In statistics, a population is defined as the complete set of elements or objects in which a
researcher has an interest. In this tutorial, the population is the set of all locations, that is all
25 m x 25 m grid cells that are agricultural land, in the example area. The number of objects
in the population is called the population size, and often denoted with the mathematical
symbol N. For our study area, introduced in Chapter 2, we can calculate the number of non-NA

grid cells with terra.

First, we run the same setup code as in Chapter 2, load the data, and calculate the number

of objects in the population.

Setup

# load library
library(terra)

# avoid scientific notation
options(scipen=999)

# rounding function

round2 <- function(x, d, p = 1){
p <- px(107-d)
n <- round(x/p)*p
format(n, nsmall = d)

}

Load data

# load raster from ISRIC WebDAV

url_folder <- "https://files.isric.org/public/tutorials/soc_stock_change/input/"
raster_fn <- "soc_stock_2020.tif"

soc <- rast(pasteO(url_folder, raster_fn))

16



Number of non-NA cells

# number of non-NA cells
ncells <- global(soc, fun="notNA")

# global() returns a data frame, but we only need a number
ncells <- ncells$notNA

# print
paste0("Number of non-NA grid cells: ", ncells)

[1] "Number of non-NA grid cells: 32932"

Therefore, in this tutorial, N = 32932.

The elements in a population usually have multiple measurable attributes, which are called
population characteristics. Example characteristics of our population are elevation, annual
precipitation and groundwater level, but in this tutorial we are only concerned with one specific
characteristic; that is the SOC stock of the 0—30 ¢m topsoil, denoted by SOC'. Each object in
the population has a SOC' value, and we define the population mean (ug ) as the average
of the characteristic over all objects in the population:

1 X
Hsoc = N Z 50C;
i=1

where SOC; is the SOC stock of the i-th object in the population.

The SOC stock is usually not constant in space so not all N objects have the same SOC' value.
We can quantify the variability by the population variance, defined as:

1N
U%oo - N Z(SOQ — tisoc)?

i=1

If SOC is measured in ton ha~! then the population mean pgoe will also be in ton ha™!, but
the population variance 0%, will be in (ton ha™')?. To facilitate interpretation, we often
take its square root to obtain ogn, which is known as the population standard deviation,
measured in ton ha™!.

For our population, we can calculate the population mean and standard deviation in R as
follows:

17



Population mean

# calculate the mean of the soc stock across the example area (ton/ha)
mean_stock <- global(soc, fun = "mean", na.rm=TRUE)

# global() returns a data frame, but we need a number
mean_stock <- mean_stock$mean

# print
pasteO("Population mean: ", round2(mean_stock, 1), " ton/ha")

[1] "Population mean: 120.7 ton/ha"

Population standard deviation

# calculate the population standard deviation of
# soc stock across the example area (ton/ha)
std_stock <- global(soc, fun = "std", na.rm=TRUE)

# global() returns a data frame, but we need a number
std_stock <- std_stock$std

# print

pasteO("Population standard deviation: ", round2(std_stock, 1), " ton/ha")

[1] "Population standard deviation: 36.1 ton/ha"

Coefficient of variation

# coefficient of variation
cv_stock <- std_stock/mean_stock

# print
paste0("Coefficient of variation: ", round2(cv_stock * 100, 1), " %")

[1] "Coefficient of variation: 29.9 %"
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Note that we had already calculated the population mean in Chapter 2. Note also that SOC
has substantial spatial variation, since ogoc is 0.299 times pgoq, that is the coefficient of
variation is 29.9%.

3.1 Unbiased estimation of the population mean

In practice, we do not know the population mean pg,~ because we cannot afford to measure
the SOC stock for each and every grid cell in the study area. Instead, we measure it for
a subset of the population, that is a sample. The number of observations in the sample is
denoted by n, the sample size. Typically, the sample size is much smaller than the population
size, that is n <« N. In Chapter 2 we used n = 50. We also chose the sample of 50 objects
randomly from the population, where each object of the population had equal probability of
being chosen and where a next object was chosen independently from objects already included
in the sample. In other words, we took a simple random sample from the population.

We can now estimate the population mean with the sample mean:

_ 1<
fisoc = S0C = — stoci

1=1

where in this case the SOC;, (i = 1...n) are the SOC observations at the n sampling locations
(i.e., grid cells).

Sampling theory now tells us that the sample mean SOC is an unbiased estimate of the
population mean pgo. Note that this does not mean that the estimation error will be zero
(as we had already noticed in Chapter 2). It only means that on average, if we would repeat
the random sampling many times, the estimation error will be zero. We will verify this in
Chapter 4. In mathematical terms, sampling theory tells us that the expected value of the
estimation error is zero.

3.2 Standard error

While using an unbiased estimation method is important and attractive, the estimate we get
from just one sample will still have an error; the sample mean will likely differ from the
population mean. Fortunately, sampling theory also tells us how large the estimation error is
likely to be. It turns out that in case of simple random sampling, the variance of the estimation
error satisfies:

2
9soc

n

var(fisoc — MSOC) =

19



Recall that the variance is a measure of the variability. Here, it means that if we would take
a simple random sample of n objects from the population many times, each time calculating
the sample mean and use it as an estimate of the population mean, then the collection of the
associated estimation errors would have a variance equal to the result of the equation above.
Note also that the mean of that same collection of estimation errors would be zero, since the
sample mean is an unbiased estimate of the population mean.

From the equation above follows that the standard deviation of the estimation error, denoted
by the standard error, is equal to asﬁ. Note that, as expected, the standard error becomes
smaller as the sample sizes increases. However, to double the estimation accuracy (i.e., to
halve the standard error) one needs to quadruple the sample size. The standard error is also
proportional to the population standard deviation. This means that it is more difficult to
accurately estimate the population mean of populations that are highly variable, while a small
sample size will be sufficient to obtain an accurate estimate if the objects in the population
have similar values for the characteristic of interest. In the extreme case of no variability
(i.e., all objects in the population have the same value), one needs to measure only one object
(n = 1) to obtain a perfect, error-free estimate of the population mean.

3.3 Confidence interval

Finally, sampling theory also tells us that the frequency distribution of a large collection of
estimation errors will approximate a normal distribution (if at least n is sufficiently large, say
n > 30). This is thanks to the Central Limit Theorem from statistics. See Figure 3.1 for a
graphical illustration. Note that the distribution is centered on zero, since the sample mean
is an unbiased estimate of the population mean.

In practice, we have only one sample from the population and hence only one estimate of the
population mean. Figure 3.1 shows the probability distribution of the estimation error
associated with that estimate. Using properties of the normal distribution, we learn that in
about 95 out of a 100 cases, the estimation error is bigger than —1.96 x Usﬁ and smaller than
1.96 x Usﬁ. With this we can derive a 95% confidence interval of the population mean
as:

(isoc — 1.96 x Z89C G0 +1.96 x 7802

Vi Vi
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Probability distribution of the estimation error

<-95% Probability mass —>

Frequency
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Figure 3.1: The estimation error associated with a simple random sample is approximately
normally distributed. The probability of an estimation error bigger than —1.96 SE
and smaller than +1.96 SE is 95%. SE: Standard Error.

In Chapter 4 we will repeatedly calculate the 95% confidence interval, each time for a different
simple random sample from the SOC population, and verify that indeed in about 95 out of 100
cases we find that the population mean is inside the lower and upper limits of the confidence
interval.

The attentive reader might have noticed that we used the population variance a%oc to calculate
the standard error and confidence interval limits. In practice we do not know the population
and would likely replace it by the sample variance s%,:

n—1

1 ~
$50c = " Z(SOCZ' — fisoc)?
i=1

This has some implications that will lead to wider confidence intervals if n is small, but this
is beyond the scope of this tutorial.

It is important to note that all results presented in this chapter are valid because we took a
simple random sample from the population. If we had taken the sample in another way,
for instance through preferential sampling or convenience sampling, then we could still
use the sample to estimate the population mean, but we could not claim that the estimate is

21



unbiased, we could not quantify the estimation error with a standard error, and we could not
derive a confidence interval.
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4 Application to example area

In Chapter 3 we presented the basics of sampling theory. In this chapter we will verify the

theoretical results of Chapter 3 with the SOC stock data from the example area.

To prepare for the calculations in this chapter, we first run the following setup lines.

Setup

# load library
library(terra)

# avoid scientific notation
options(scipen=999)

# set a seed
set.seed (987)

# rounding function

round2 <- function(x, d, p = 1){
p <- px(107-d)
n <- round(x/p)*p
format(n, nsmall = d)

}

Load data

# load raster from ISRIC WebDAV

url_folder <- "https://files.isric.org/public/tutorials/soc_stock_change/input/"
raster_fn <- "soc_stock_2020.tif"

soc <- rast(pasteO(url_folder, raster_fn))

23



4.1 Demonstrating unbiasedness

We first verify that the sample mean is an unbiased estimate of the population mean by running
a for loop that repeatedly takes a random sample of 50 observations from the study area (i.e.,
the population), each time computing the estimated SOC stock, and checking how close the
average of those estimates is to the true total SOC stock:

Population mean and ‘True’ SOC stock

# compute the area (ha) (excluding NAs)
area_ha <- expanse(soc, unit = "ha")[1, "area"]

# calculate the mean SOC stock across the non-NA pixels (ton/ha)
mean_stock <- global(soc, fun = "mean", na.rm=TRUE) [1, "mean"]

# multiply mean SOC stock (ton/ha) by area (ha) to get the total SOC stock
tot_stock <- mean_stock * area_ha

Estimation error of random samples

# indicate number of loops and sample size
loops <- 1000
sample_size <- 50

24



# create a vector to store the estimation errors
est_errors <- c()

# warning: it may take a while to run
for (i in seq_len(loops)){
# sample n non-NA locations as spatial points
random_sample <- spatSample(soc, size = sample_size,
method = "random", as.points
values = TRUE, na.rm = TRUE)

FALSE,

# when we set as.points = FALSE, spatSample() returns a data frame

# select the first column, which contains the extracted soc stock values

random_sample <- random_sample[[1]]

# compute the average SOC stock for this sample (ton/ha)
sample_mean <- mean(random_sample)

# calculate associated estimate of the total stock
tot_stock_est <- sample_mean * area_ha

# calculate the estimation error
est_error <- tot_stock_est - tot_stock

# add to the estimation error vector
est_errors <- c(est_errors, est_error)

# print summary statistics of the 1000 estimation errors
summary (est_errors)

Min. 1st Qu. Median Mean 3rd Qu.
-33858.073 -6985.637 -8.042 -84.803 7094 .286

Max.
34178.303

Estimation errors distribution
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# plot a frequency distribution of the 1000 estimation errors
hist(est_errors,
main = pasteO("Distribution of ", loops,
" estimation errors with sample size n = ",
sample_size),

xlab = "Estimation error (ton)",
freq = TRUE,
breaks = 24,

cex.main = 0.8, cex.lab = 0.8, cex.axis = 0.8)

Distribution of 1000 estimation errors with sample size n = 50

o
O_
AN
o
m_
> —
=
5} o
> o —
o —
()
S
L o _]
[Te]
o_

I I I I I I I
—-30000 —-10000 0 10000 20000 30000

Estimation error (ton)

Figure 4.1: Frequency distribution of 1000 SOC stock estimation errors, each of which
associated with an estimate of the SOC stock using a simple random sample
of size 50.

Note that the mean of the 1000 estimation errors is very small (it is -84.8 ton), compared to
the SOC stock (248387.7 ton), and that it will get closer and closer to zero if we increase the
number of repeats. Feel free to check this yourself by changing n = 1000 to n = 100000 or

n = 1000000, if this is computationally feasible.
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4.2 Verifying the normal distribution and confidence intervals

Chapter 3 not only stated that the expected value of the estimation error is zero but also that
it is normally distributed and has a spread equal to the standard error. This is also confirmed
by the 1000 estimation errors, because the frequency distribution shown in Figure 4.1 matches

the normal distribution very well and has a spread that equals the standard error.

verified in the R code below.

This is

Estimation errors distribution vs normal distribution

# calculate the standard error (see Chapter 3)
SE <- global(soc, fun = "std", na.rm=TRUE)$std *area_ha / sqrt(sample_size)

# create a sequence of x values (range covers the histogram)
x <- seq(-4%*SE, 4xSE, length.out = loops)

# width of histogram bins

bin_width <- diff (hist(est_errors, plot = FALSE)$breaks) [1]
# calculate the normal density values at x

# scaled by histogram bin width and count

y <- dnorm(x, mean = 0, sd = SE)*loops*bin_width

# plot histogram with normal distribution on top
hist(est_errors,
main = pasteO("Distribution of ", loops,
" estimation errors with sample size n = ",
sample_size, "\n",
"with theoretical normal distribution plotted on top"),

xlab = "Estimation error (ton)",
freq = TRUE,
breaks = 24,

cex.main = 0.8, cex.lab = 0.8, cex.axis = 0.8)

lines(x, y, lwd = 2, col = "black")
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Figure 4.2: Distribution of 1000 SOC stock estimation errors based on random samples
of size 50. The black line represents a zero-mean normal distribution with a

Feel free to run the code above with a larger number of repeats. The more repeats we do,
the closer the frequency distribution of the estimation errors will approximate the theoretical

probability distribution.

Section 3.3 showed how a 95% confidence interval for the population mean is derived. It was
explained that, in 95 out of a 100 cases, the true population mean is between the lower and
upper limits of the 95% confidence interval. We can verify this by counting how often this

occurred with the 1000 repeats.

Verify theoretical confidence interval
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# indicate number of loops and sample size
loops <- 1000
sample_size <- 50

# create a vector to store TRUE or FALSE if the
# true population mean is within the confidence interval
within_confintv <- c()

# warning: it may take a while to run
for (i in seq(l, loops, 1)){
# sample n non-NA locations as spatial points
random_sample <- spatSample(soc, size = sample_size,
method = "random", as.points = FALSE,
values = TRUE, na.rm = TRUE)
# when we set as.points = FALSE, spatSample() returns a data frame

# select the first column, which contains the extracted soc stock values
random_sample <- random_sample[[1]]

# compute the average SOC stock for this sample (ton/ha)
sample_mean <- mean(random_sample)

# compute the standard error
SE <- sd(random_sample)/sqrt(sample_size)

# compute the lower and upper limit of the confidence interval
lower_limit <- sample_mean - 1.96%SE
upper_limit <- sample_mean + 1.96%SE

# is the true population mean within the confidence interval?
check_intv <- lower_limit <= mean_stock & mean_stock <= upper_limit

# add iteration check to vector
within_confintv <- c(within_confintv, check_intv)

# how many times did the true mean fall within the confidence interval?
within_confintv <- sum(within_confintv)

# print
pasteO("The true mean fell within the confidence interval ",
within_confintv, " out of 1000 times")

[1] "The true mean fell within the confidence interval 941 out of 1000 times
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We find that in 941 out of 1000 cases the population mean is inside the 95% confidence interval,
which is close to the expected value of 950.

4.3 Analysing the effect of sample size

Let us now repeat the analysis above for different sample sizes, that is for n = 200 and n = 800,
and compare the average width of the 95% confidence interval with that of the n = 50 case.

Calculate confidence interval widths for different sample sizes

# indicate number of loops and sample size
loops <- 1000
sample_size <- c(50, 200, 800)
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# warning: it may take a while to run

for (n in sample_size) {
# initialize a vector to store the width of the confidence interval
width_confintv <- c()

for (i in seq_len(loops)) {
# sample n non-NA locations as spatial points
random_sample <- spatSample(soc, size = n, method = "random",
as.points = FALSE, values = TRUE,
na.rm = TRUE)
# when we set as.points = FALSE, spatSample() returns a data frame

# select the first column, which contains the extracted soc values
random_sample <- random_sample[[1]]

# compute the average SOC stock for this sample (ton/ha)
sample_mean <- mean(random_sample)

# compute the standard error
SE <- sd(random_sample) / sqrt(n)

# compute the lower and upper limit of the confidence interval
lower_limit <- sample_mean - 1.96 * SE
upper_limit <- sample_mean + 1.96 * SE

# add iteration width to vector
width_confintv <- c(width_confintv, upper_limit - lower_limit)

# compute the mean of the confidence interval widths
width_confintv_mean <- mean(width_confintv)

# convert to SOC stock
width_confintv_mean <- width_confintv_mean * area_ha

# print
print (paste0("Confidence interval width mean when n=", n, ": ",
round2(width_confintv_mean, 0, 10)," ton"))

[1] "Confidence interval width mean when n=50: 40880 ton"
[1] "Confidence interval width mean when n=200: 20550 ton"
[1] "Confidence interval width mean when n=800: 10270 ton"

This shows, as expected, that the confidence interval width is smaller if the sample size is
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larger. It also confirms that to double the estimation accuracy (to obtain a twice as narrow
confidence interval) we need to quadruple the sample size. Figure 4.3 shows the relation
between the confidence interval width and sample size for sample sizes varying from n = 25 to
n = 1600. You may verify that the confidence interval width is inversely proportional to the
square root of the sample size. Note also that for small sample sizes the confidence interval
width is quite variable and varies from case to case (i.e., it is highly influenced by the random
sample that one happens to take), as evidenced by the wider box plots.

Relation between confidence interval width and sample size

Confidence interval width
0 40000 80000
| |

Sample size

Figure 4.3: The confidence interval width becomes smaller as the sample size increases. Results
for the 1000 repeats for each sample size are summarised in boxplots.

This chapter confirmed the theoretical results of Chapter 3. It showed that simple random
sampling yields an unbiased estimate of the total SOC stock in an area of interest. It also
showed that the estimation accuracy is adequately assessed with a confidence interval, and
that the width of the confidence interval decreases as the sample size increases.

It is important to be aware that in 1 out of 20 cases the true SOC stock is outside the 95%
confidence interval. In statistics we can never be 100% certain, unless we measure the entire
population.

We could of course reduce the chance of the true population mean being outside the confidence
interval by replacing the 95% confidence interval with a 98% or 99% confidence interval (feel
free to try this out yourself), but the price paid is an increase of the confidence interval width.

We can decrease the confidence interval width by increasing the sample size, but this will
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increase fieldwork and laboratory costs. In Chapter 5 we will explore how stratified random
sampling can improve estimation accuracy without requiring a larger sample size.
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5 Stratified random sampling

We start this chapter with running a few setup lines and loading the data.

Setup

# load libraries
library(terra)
library(sf)
library(dplyr)

# set a seed
set.seed(987)

# rounding function

round2 <- function(x, d, p = 1){
p <- p* (10°-4d)
n <- round(x/p)*p
format (n, nsmall = d)

}

Load data

# load raster from ISRIC WebDAV

url_folder <- "https://files.isric.org/public/tutorials/soc_stock_change/input/"
raster_fn <- "soc_stock_2020.tif"

soc <- rast(pasteO(url_folder, raster_fn))

Prepare data

34



# modify soc raster metadata to make it easier to call
soc_values <- "soc_values"
names (soc) <- soc_values

Total area

# terra::expanse() returns the area covered by all non-NA raster cells
area_ha <- expanse(soc, unit = "ha")[1, "area"]

In Chapter 4 we learnt that with simple random sampling we obtain an unbiased estimate
of the population mean, in our case the total topsoil SOC stock in the example area. The
estimate is simply the unweighted average of the sample of observations that we took, that is
the sample mean. We also learnt that we can quantify the accuracy of this estimate with a
confidence interval.

Confidence interval of simple random sampling
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# indicate the sample size
sample_size <- 200

# sample n non-NA locations

random_sample <- spatSample(soc, size = sample_size, method = "random",
as.points = FALSE, values = TRUE,
na.rm = TRUE)

# select the first column, which contains the extracted soc values
random_sample <- random_sample[[1]]

# compute the average SOC stock for this sample (ton)
sample_mean <- mean(random_sample)*area_ha

# compute the standard error
SE <- sd(random_sample)/sqrt(sample_size)*area_ha

# compute the lower and upper limit of the confidence interval
lower_limit <- sample_mean - 1.96*SE

upper_limit <- sample_mean + 1.96*SE

width_confintv <- upper_limit - lower_limit

# print

pasteO("Estimated mean (ton): ", round2(sample_mean, O, 10))

paste0("95% confidence interval: [", round2(lower_limit, O, 10), ", ",
round2(upper_limit, 0, 10), "1")

pasteO("Confidence interval width: ", round2(width_confintv, 0, 10))

[1] "Estimated mean (ton): 241090"
[1] "95% confidence interval: [230530, 251640]"
[1] "Confidence interval width: 21110"

The above shows that, using a simple random sample of size 200, we are 95% confident that
the true SOC stock of the example area is between 230530 and 251640 ton.

Simple random sampling is just one of many probability sampling designs, and usually not
the most efficient. There are other designs that can produce a more accurate estimate (i.e., a
narrower confidence interval) with the same sample size. In this chapter we will consider one
such design, that is stratified random sampling.

Stratified random sampling divides the population of interest into sub-populations, also called
strata. In our case, we subdivide the example area into subareas that do not overlap and that
together cover the entire area. Stratified random sampling then continues by taking a simple
random sample from each stratum, and deriving the estimate of the population mean and the
associated standard error and confidence interval from the observations in all strata.

36



Stratified random sampling will produce a more accurate estimate of the population mean
than simple random sampling for the same sample size if the strata are homogeneous, that is,
if the variance of the population characteristic is smaller within strata than between strata.

One way of defining the strata in our example area would therefore be to delineate subareas
that have the same landuse, soil type or land management history, because the SOC stock
depends on these factors. However, in this chapter we will use strata that are geographically
compact. This should also work because the SOC stock will tend to have similar values for
locations that are not that far apart. We will derive the strata first, next briefly explain the
statistical inference associated with stratified random sampling, and finally apply it to our
example area to verify that the confidence interval indeed narrows.

5.1 Compact geographical strata

Compact geographical strata can be calculated for any area of interest using the k-means
algorithm. We adapted code from the “Spatial Sampling with R” book by Brus (2022). We
use 40 strata and ensure that all have approximately the same size (number of pixels) and are
as geographically compact as possible.

Compute geographical strata using the k-means algorithm

# extract cell coordinates of non-NA cells
cells <- which(!is.na(values(soc))) # indices of valid cells
coords <- xyFromCell(soc, cells) # centroid coordinates matrix (x,y)

# define number of strata
k <- 40

# run kmeans on the coordinates
# iter.max is 10 by default
km <- kmeans(coords, centers = k)

# create an empty raster to store strata IDs
strata_raster <- rast(soc)
values(strata_raster) <- NA

# assign strata IDs back to raster cells
values(strata_raster) [cells] <- km$cluster

# modify metadata
varnames (strata_raster) <- "kmeans_stratified_raster
names (strata_raster) <- "strata"
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# print
strata_raster

class : SpatRaster

size : 172, 192, 1 (arow, ncol, nlyr)

resolution : 25, 256 (x, y)

extent : 261500, 266300, 583500, 587800 (xmin, xmax, ymin, ymax)
coord. ref. : Amersfoort / RD New (EPSG:28992)

source(s) ! memory

varname : kmeans_stratified_raster

name . strata

min value : 1

max value : 40

We could already run terra::plot(strata_raster) to view the strata, but let us first add
some elements to refine the map. We want to apply a discrete colour legend in which each

stratum has a different colour than its neighbours.

Plot k-means geographic strata with discrete colour legend

# convert raster to polygons, dissolve to merge cells of the same stratum
polys <- as.polygons(strata_raster, dissolve = TRUE) # SpatVector polygon

Warning in x@pntr$as_polygons(round[1], aggregate[l], values[1], na.rm[1],
GDAL Message 1: DeprecationWarning: 'Memory' driver is deprecated since GDAL
3.11. Use 'MEM' onwards. Further messages of this type will be suppressed.
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polys_sf <- st_as_sf(polys) # sf polygon

# adjacency is a list of integer vectors indicating
# which polygons touch which other polygons
adjacency <- st_touches(polys_sf)

# initialize vector of colours (by index)
color_ids <- rep(0, length(adjacency))

# function to assign the smallest colour index not used by neighbours
for (i in seq_along(color_ids)) {

neighbor_colors <- color_ids[adjacency[[i]]]

used <- unique(neighbor_colors[neighbor_colors > 0])

color_ids[i] <- min(setdiff(1:5, used))
}

# choose a discrete colour palette
palette <- c("#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3")

# assign these colours to the strata IDs
strata_colors <- palette[color_ids]

We can also add a label that specifies the stratum ID and the number of pixels it contains.

# find the number of pixels per strata
fc <- freq(strata_raster, bylayer = FALSE)

# get centroids from the spatVect polygon
centroids <- centroids(polys)

# plot to check
plot(strata_raster, col = strata_colors, legend = FALSE,
main = pasteO(k, " geographic strata (k-means on terra)"))

# add labels
text(centroids, labels = paste(fc$value, fc$count, sep = "\n"),
cex = 0.7, col = "black")
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Figure 5.1: Compact geographic stratification of the study area generated by the k-means
algorithm with terra. The labels inside the strata indicate the stratum ID
and its number of pixels.

5.2 Statistical inference of stratified random sampling

In stratified random sampling, we divide the population into K strata, take a simple random
sample of size n;, (k = 1... K) from each stratum, and estimate the population mean pgoe-
by:

K
fisoc,sir = Y ay - SOC},
=1

where a,, represents the size of stratum k relative to that of the whole area. It is calculated
as:

]Vk
ak:W
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where IV, is the number of grid cells in stratum k. SOC), is the average of the n;, SOC stock
observations in stratum k:

- 1 &k
SOC), = —> SOCy,

L Rt

with SOC) ; the i-th SOC stock observation in stratum k.

Note that in addition to choosing the number of strata K and defining the strata, one must
also define the sample size n;, of each stratum. Obviously the sum of these must equal the total
sample size, that is Z,ﬁil n; = n, but different divisions over the strata can be used. One option
is to allocate larger sample sizes to strata that are heterogeneous (if one has prior information
about that), or to allocate smaller sample sizes to strata that are poorly accessible. Everything
is allowed, as long as one takes a simple random sample from within the stratum and all stratum
sample sizes are 2 or bigger. It is also common to use proportional allocation, that is to
choose the stratum sample size proportional to the size of the stratum, meaning that a stratum
that is twice as large an another stratum has a twice as large sample size. In this chapter we
will use a constant sample size per stratum, which is close to proportional allocation since all
strata in Figure 5.1 have a similar same size.

In stratified random sampling, the variance of the estimation error is given by:

K 2

(i _ ) = 2 Sk
var\tsoc,str — Msoc) = ay

k=1 T

where s is the sample variance within stratum & and given by:

g

> (SOC,,; — SOC,)?

i=1

1
nk—l

2 _
Sk_

As you can see the calculations are a bit more involved than for simple random sampling, but
it is only a matter of working meticulously and making sure to use the inference that goes with
the sampling design. We can compute the standard error from the variance of the estimation
error in the usual way (by taking the square root) and use that to derive a confidence interval.

5.3 Application to the example area

Let us use K = 40 and n = 200 to estimate the SOC stock of our example area using stratified
random sampling. Note that this implies that we use n;, = 5.
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Generate a stratified random sample

# we want the total sample size to be n=200

# since we have 40 strata, we need 5 sampling
# locations in each stratum

n k <-5

# convert strata_raster to data frame with cell index
strata_df <- as.data.frame(strata_raster, xy = TRUE,
cells = TRUE, na.rm = TRUE)

# sample 5 points per stratum

stratified_df <- strata_df %>%
group_by (strata) %>%
slice_sample(n = n_k)

# convert to SpatVector
stratified_points <- vect(stratified_df, geom = c("x", "y"),

crs = crs(strata_raster))

# extract soc stock values at stratified point locations

stratified_sample <- extract(soc, stratified_points, bind = TRUE)

Plot stratified random sample

# previously we had calculated the strata

# we show stratum boundaries and the 200 point locations

# so that we can verify we have exactly 5 points per stratum
strata_colors <- strata_colors[stratified_sample$stratal

# plot
plot(soc, main = "Stratified sample of 200 point locations",
plg = list(title = "ton/ha"), cex.main = 1)
plot(polys, col = NA, border = "white", add = TRUE)
plot(stratified_sample["strata"], pch = 21, cex = 1,
col = "black", bg = strata_colors,
add = TRUE)
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Check that the total number of grid cells over all strata is correct

number of non-NA cells

<- global(soc, fun="notNA")

global() returns a data frame, but we only need a number
<- N$notNA

=2 +®# =2

# find the number of pixels per stratum
N_k <- freq(strata_raster, bylayer = FALSE)
# make sure it is sorted by stratum

N_k <- N_k[order(N_k$value), ]

# in N_k, the number of pixels per stratum is stored in the "count" column

# the sum of the counts should be equal to the total number of non-NA pixels
sum(N_k$count) ==

[1] TRUE
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Stratified sample mean

The group_by () function in the dplyr library will help us group the data by stratum to
calculate the sample mean of each stratum.

# a_k represents the size of a stratum relative to that of the whole area
a_k <- N_k[["count"]]/N

# calculate the sample mean per stratum
soc_k <- stratified_sample 7,>7
as.data.frame() %>%
group_by (strata) %>%
summarise(soc_k = mean(soc_values)) %>%
arrange (strata) # make sure it is sorted by strata

# convert to vector
soc_k <- soc_k[["soc_k"]]

# compute the stratified mean and
# multiply by size of area to get total SOC stock (ton instead of ton/ha)
stratified _mean <- sum(a_k * soc_k) * area_ha

Stratified variance

# compute the sample variance within strata s_k™2
s_k2 <- stratified_sample %>/

as.data.frame() %>%

group_by (strata) %>%

summarise(s_k2 = var(soc_values)) %>%

arrange (strata)

# convert to vector
s_k2 <- s k2[["s_k2"]]

# compute variance of the estimation error
stratified_variance <- sum((a_k™2) * (s_k2/n_k))

Confidence interval of stratified random sampling
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# compute standard error
SE <- sqrt(stratified_variance) * area_ha

# compute confidence interval

lower_limit <- stratified_mean - 1.96 * SE
upper_limit <- stratified_mean + 1.96 * SE
width_confintv_str <- upper_limit - lower_limit

# print

pasteO("Estimated mean (stratified): ",
round2(stratified_mean, O, 10), " ton")

paste0("95% confidence interval: [",
round2(lower_limit, O, 10), ", ",
round2(upper_limit, 0, 10), "1")

pasteO("Confidence interval width: ",
round2(width_confintv_str, 0, 10), " ton")

[1] "Estimated mean (stratified): 248190 ton"
[1] "95% confidence interval: [239580, 256810]"
[1] "Confidence interval width: 17230 ton"

As expected, the confidence interval width of stratified random sampling is smaller than that
of simple random sampling. The width decreased from 21110 ton to 17230 ton, thus a decrease
of 18.4%. It pays off to use stratified random sampling, even with using compact geographical
strata.
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6 Estimating SOC stock change

So far we applied statistical sampling theory to estimate the SOC stock for an area, but it can
also be used to estimate the SOC stock change in an area between two points in time. This
is most interesting for MRV projects, since these wish to establish whether the SOC stock
of an area has changed between the start and end of a project. Much of the methodology
used so far applies to estimating change as well, but there are some extensions that must be
addressed. The most important of these is a decision on the space-time sampling design.
In this chapter we distinguish two cases:

1) Static sampling, where we use the same sampling locations at the start and end of the
project;

2) Synchronous sampling, also referred to as dynamic sampling, where we use a dif-
ferent set of sampling locations at the start and end of the project.

We will see that static sampling is more efficient, meaning that, with the same sample size,
it yields a more accurate estimate of the SOC stock change than synchronous sampling. The
disadvantage, however, is that it is susceptible to manipulation, since projects might pay more
effort to increasing the SOC stock at the sampling locations and ignore other parts of the
area, since these will not be sampled anyway. It is also important to be aware that in practice
one will never be able to return exactly to the same location and measure the SOC stock
of the same soil sample at the start and end of a project, if only because soil sampling is
destructive.

We will illustrate static and synchronous sampling using the same example area that we used
in previous chapters. In Chapter 2 we presented a map of the SOC stock in Figure 2.2, but
in fact, this was a map of the SOC stock for the year 2020. Using space-time geostatistics,
SOC stock maps for multiple years were generated, including the years 1990 and 2020. In this
chapter we sample from the simulated SOC stock maps of these two years to estimate the SOC
stock change during the 30-year period from 1990 to 2020.

As usual we start with running some setup lines.
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Setup

# load library
library(terra)

# avoid scientific notation
options(scipen=999)

# set a seed (for reproducible research)
set.seed(987)

# rounding function

round2 <- function(x, d, p = 1){
p <- px(107-d)
n <- round(x/p)*p
format (n, nsmall = d)

}

To ensure colour scale comparability when plotting multiple rasters, the range argument
can be set in the terra: :plot function. The function below saves us a few lines of code
when we need to find the minimum and maximum values for one or more rasters.

# function to compute a raster min max values

get_minmax <- function(c_rasters){
mimax_rasters <- global(c_rasters, fun = "range", na.rm = TRUE)
min_range <- floor(min(mimax_rasters["min"]))
max_range <- ceiling(max(mimax_rasters["max"]))

rasters_range <- c("min" = min_range,
"max" = max_range)
return(rasters_range)
3
Load data

# load raster from ISRIC WebDAV

url_folder <- "https://files.isric.org/public/tutorials/soc_stock_change/input/"
soc_1990 <- rast(file.path(url_folder, "soc_stock_1990.tif"))

soc_2020 <- rast(file.path(url_folder, "soc_stock_2020.tif"))

47



Prepare data

# rename to make it easier to call
names (soc_1990) <- "soc_1990"
names (soc_2020) <- "soc_2020"

Figure 6.1 and Figure 6.2 show the SOC stock maps for 1990 and 2020, and Figure 6.3, shows
a map of the SOC stock change from 1990 to 2020. As noted before, in practice we would
never have these maps but only the samples that we took in 1990 and 2020. However, for the
purposes of this tutorial we need these maps, so that we can sample from them and assess how
close the estimated SOC stock change is to the ‘true’ SOC stock change.

Derive the ‘true’ SOC stock change map

# calculate the soc stock change
soc_change <- soc_2020 - soc_1990

# fix metadata
names (soc_change) <- "soc_stock_change_ton_ha_1990-2020"
varnames (soc_change) <- names(soc_change)

Prepare elements for plotting

# find the min-max across the 1990 and 2020 rasters
soc_range <- get_minmax(c(soc_1990, soc_2020))
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# min-max values of the soc stock change raster
diff_range <- get_minmax(soc_change)

# get the absolute maximum to mirror the colour palette around it
max_abs <- max(abs(diff_range))

# define the palette colours
colour_palette <- colorRampPalette(c("red", "white", "blue"))

# define number of colour codes to generate from the colour palette
n_colours <- 100

# get the colour codes
colours <- colour_palette(n_colours)

Plot SOC stock in 1990, 2020, and its change

# plot soc stock 1990
plot(soc_1990, main = "topsoil SOC stock 1990",
plg = list(title = "ton/ha"), range = soc_range)
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Figure 6.1: Topsoil SOC stock in the year 1990.

# plot soc stock 2020
plot(soc_2020, main = "topsoil SOC stock 2020",
plg = list(title = "ton/ha"), range = soc_range)
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Figure 6.2: Topsoil SOC stock in the year 2020.

# plot soc change

plot(soc_change,
main = pasteO("topsoil SOC stock change"),
plg = list(title = "ton/ha"), col = colours,
range = c(-max_abs, max_abs))
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Figure 6.3: SOC stock change between 1990 and 2020.

Save SOC stock change raster (optional)

# provide an output path
outputDir <- "/home/tutorial/example/output"

# use writeRaster() to save a raster output
writeRaster (soc_change,
filename = file.path(outputDir, "soc_stock_change.tif"),

gdal=c(
"of=C0OG", # Output format COG (Cloud Optimized GeoTIFF)
"COMPRESS=DEFLATE" # Compression method
),

overwrite=TRUE)

Total area




# terra::expanse() returns the area covered by all not-NA raster cells
# since the area is the same for both rasters, we can use either
area_ha <- expanse(soc_2020, unit = "ha")[1, "area"]

‘True’ SOC stock change

# calculate the mean soc stock change across the non-NA pixels (ton/ha)
mean_stock_change <- global(soc_change, fun = "mean", na.rm=TRUE) [1, "mean"]

# multiply SOC stock change (ton/ha) by area (ha) to get the
# total SOC stock change (ton) between 1990 and 2020
tot_stock_change <- mean_stock_change*area_ha

# print
cat("'True' SOC stock change: ", round2(tot_stock_change, 0, 10), " ton\n")

# divide by the number of years to get the soc change per yer
stock_change_per_year <- tot_stock_change/(30 * area_ha)

# print
cat("'True' SOC stock change per unit area and year:\n",
round2(stock_change_per_year, 3), " ton per ha per year\n")

'True' SOC stock change: 33750 ton
'True' SOC stock change per unit area and year:
0.547 ton per ha per year

The ‘true’ SOC stock change for the example area during the 30-year period is 33750 ton,
which corresponds to 0.547 ton ha™! yr—1.

Overall, the SOC stock in the example area has increased between 1990 and 2020. But Fig-
ure 6.3 shows that the SOC stock change is highly spatially variable with values between —7
and +7 ton ha yr—!. Given this large spatial variability it might be difficult to prove that
the SOC stock has truly increased, if all that we have is a sample of n SOC stock observations
from the area. Let us explore this in the next sections.
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6.1 Static sampling

In static sampling we visit the same locations in 1990 and 2020. This means that we can
calculate the SOC stock difference at the n sampling locations and estimate the population
mean (SOC stock difference for the example area) with the sample mean. In other words,
we can apply exactly the same methods as used in Chapter 4 and Chapter 5, but now for
a different population characteristic (SOC stock change instead of SOC stock). This is done
in the code chunk below for the case of a simple random sample of size 400. Note that the
variance of the estimation error is calculated in the same way as in Chapter 3, only with SOC
replaced by ASOC (i.e., the SOC stock change from 1990 to 2020):

2
ag

~ _ %9As0cC

vaT(HASOC,static — fasoc) = Tn

Generate a random sample

# define the sample size
sample_size <- 400

# sample n non-NA locations from soc_2020

sample_2020 <- spatSample(soc_2020, size = sample_size,
method = "random", as.points = TRUE,
values TRUE, na.rm = TRUE)

# use the same locations to sample from soc_1990
# when bind = TRUE, it retains the values extracted from soc_2020
sample_extract <- as.data.frame(
extract(soc_1990, sample_2020,
ID = FALSE, bind = TRUE))

# compute the difference
random_sample <-
sample_extract[, "soc_2020"] - sample_extract[, "soc_1990"]

Calculate estimate and confidence interval
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# compute the average SOC stock change for this sample (ton/ha)
sample_mean <- mean(random_sample) * area_ha

# compute the standard error
std_change <- global(soc_change, fun = "std", na.rm=TRUE)
SE <- std_change/sqrt(sample_size) * area_ha

# compute the lower and upper limit of the confidence interval
lower_limit <- sample_mean - 1.96*SE
upper_limit <- sample_mean + 1.96*SE

# is zero inside the confidence interval?
check_zero_intv <- lower_limit < 0 & O < upper_limit

# print - units in tons
pasteO("Estimated SOC stock change: ", round2(sample_mean, O, 10)," ton")
paste0("95% confidence interval: [", round2(lower_limit, O, 10), ", ",
round2 (upper_limit, 0, 10), "I")
pasteO("Confidence interval width: ",
round2(upper_limit - lower_limit, O, 10)," ton")
paste0("Is zero SOC stock change inside the confidence interval: ",
check_zero_intv)

[1] "Estimated SOC stock change: 34970 ton"

[1] "95% confidence interval: [26420, 43510]"

[1] "Confidence interval width: 17080 ton"

[1] "Is zero SOC stock change inside the confidence interval: FALSE"

The estimated SOC stock change is quite close to the true SOC stock change, so it appears
that a sample size of 400 is sufficient to obtain a fairly accurate estimate. This is confirmed by
the confidence interval, which is not that wide. Note also that the 95% confidence interval does
not include zero, which means that we can state with 95% confidence that the true SOC stock
of the example area has indeed increased from 1990 to 2020. In other words, the estimated
increase is statistically significant.

6.2 Synchronous sampling

In synchronous sampling a different set of sampling locations is selected for the two sampling
years. Here, we take a simple random sample of size n = 400 in 1990 and another simple
random sample of size n = 400 in 2020. The estimate of the SOC stock change from 1990 to
2020 is then obtained by subtracting the first estimate from the second:
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Generate synchronous random samples

# define the sample size
sample_size <- 400

# sample n non-NA locations

random_sample_1990 <- spatSample(soc_1990, size = sample_size,
method = "random", as.points = TRUE,
values = TRUE, na.rm = TRUE)

random_sample_2020 <- spatSample(soc_2020, size = sample_size,
method = "random", as.points = TRUE,
values = TRUE, na.rm = TRUE)

Calculate synchronous sample mean

# select the first column, which contains the extracted soc values
random_sample_1990 <- as.data.frame(random_sample_1990) [[1]]
random_sample_2020 <- as.data.frame(random_sample_2020) [[1]]

# compute the average SOC stock for this sample (ton/ha)
sample_mean_1990 <- mean(random_sample_1990)

sample_mean_2020 <- mean(random_sample_2020)

# sample mean difference
sample_mean_change <- sample_mean_2020 - sample_mean_1990

# multiply by size of area to covert to total SOC stock change
sample_mean_change <- sample_mean_change * area_ha

# print
round2(sample_mean_change, 0, 10)

[1] "36120"

As usual we also want to quantify the uncertainty of this estimate with a standard error and
derive the associated confidence interval. For this we need to calculate the variance of the
estimation error, which is given by:

1
~ _ 2 2
var (HAsoc,syn — fasoc) = E(U 5002020 T O soc,1990)
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This equation holds because in statistics we have the equality

var(X —Y) = var(X) +var(Y) — 2cov(X,Y)

where in our case the covariance term is zero because the sampling locations in 1990 were
selected independently from those in 2020. Using the equation above we can now calculate

the standard error and confidence interval associated with synchronous sampling:

Calculate confidence interval of synchronous sampling

# terra::global() fun does not include variance,

# so let's use the standard deviation instead
std_1990 <- global(soc_1990, fun = "std", na.rm=TRUE)
std_2020 <- global(soc_2020, fun = "std", na.rm=TRUE)

# compute the standard error
SE <- sqrt((std_199072 + std_2020"2) / sample_size) * area_ha

# compute the lower and upper limit of the confidence interval
lower_limit <- sample_mean_change - 1.96*SE
upper_limit <- sample_mean_change + 1.96*SE

# is zero inside the confidence interval?
check_zero_intv <- lower_limit < O & O < upper_limit

# print - units in tons
pasteO("Estimated SOC stock change: ", round2(sample_mean_change, 0, 10))
paste0("95% confidence interval: [", round2(lower_limit, O, 10), ", ",
round2 (upper_limit, 0, 10), "1")
pasteO("Confidence interval width: ",
round2(upper_limit - lower_limit, O, 10)," ton")
pasteO("Is zero SOC stock change inside the confidence interval: ",
check_zero_intv)

[1] "Estimated SOC stock change: 36120"

[1] "95% confidence interval: [24860, 47380]"

[1] "Confidence interval width: 22520 ton"

[1] "Is zero SOC stock change inside the confidence interval: FALSE"

Also in the synchronous sampling case a sample size of n = 400 is sufficient to show a statisti-
cally significant SOC stock increase from 1990 to 2020. But note that the estimation accuracy

is somewhat lower than that of static sampling, as shown by the wider confidence interval.
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7 Composite soil sampling

Previous chapters in this tutorial have shown that sampling theory from statistics is a useful
technique to estimate the total or average SOC stock in an area as well as the total or average
SOC stock change of that area between two points in time. The advantages of sampling
theory are that the estimates are unbiased, model-free and that the estimation accuracy can
be quantified by a standard error or confidence interval. But an important disadvantage is
that to reach a desired accuracy a large sample size may be required, which is costly. We
learnt that stratified random sampling is more efficient than simple random sampling, and for
estimating changes a static design outperforms a synchronous design, but in practice one might
still need to collect and analyse a large number of soil samples to reach a required accuracy
level. In this chapter we discuss one more technique to reduce field and laboratory costs, by
using composite soil sampling.

In composite soil sampling we merge soil samples taken from multiple locations, and mix
them well before we analyse the composite soil sample in the laboratory on soil properties
of interest, such as SOC. Usually, the merged soil samples are taken from nearby locations,
thus eliminating short-distance spatial variability and effectively reducing the variance and
standard deviation of the data. Recall from Chapter 3 that this will decrease the standard
error, since the standard error is proportional to the population standard deviation. And
since a smaller standard error leads to a smaller confidence interval we get that with the same
sample size our estimate of the total SOC stock in an area is more accurate than if we had not
used composite soil sampling. Let us verify this now and quantify the uncertainty reduction
for estimation of the SOC stock change between 1990 and 2020 in the example area.

We will ‘collect’” composite soil samples from the example area by merging 9 soil samples in a
3 by 3 grid with grid distance 25 m. We will use a static design and so visit the same locations
in 1990 and 2020. In other words, we calculate the average of the 9 SOC stock change values
in a 3 x 3 window of the ASOC raster map and otherwise do exactly the same as we did in
Chapter 6. We will use a sample size of n = 100, which is much smaller than the sample size
(n = 400) used in Chapter 6. We are curious about the confidence interval that we will get:
will it be wider than that in Chapter 6, similar in size, or perhaps even narrower?

As usual we start with running some setup lines. After that we randomly select the centre
locations of 3 x 3 windows, assemble all cells in the window and calculate their average SOC
stock change (while making sure that we do not go outside the study area and that we exclude

NA cells).
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Setup

# load library
library(terra)

# avoid scientific notation
options(scipen=999)

# set a seed
set.seed(2025)

# rounding function

round2 <- function(x, d, p = 1){
p <- p*(107-d)
n <- round(x/p)*p
format(n, nsmall = d4)

3

# function to compute raster min max values
get_minmax <- function(c_rasters){

mimax_rasters <- global(c_rasters, fun = "range", na.rm

min_range <- floor(min(mimax_rasters["min"]))
max_range <- ceiling(max(mimax_rasters["max"]))

= TRUE)

rasters_range <- c("min" = min_range,
"max" = max_range)
return(rasters_range)
}
Load data

# load raster from ISRIC WebDAV

url_folder <- "https://files.isric.org/public/tutorials/soc_stock_change/output/"

raster_fn <- "soc_stock_change.tif"
soc_change <- rast(pasteO(url_folder, raster_fn))

Prepare data
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# rename to make it easier to call
layer_name <- "soc_change"
names (soc_change) <- layer_name

Total area

# terra::expanse() returns the area covered by all not-NA raster cells
area_ha <- expanse(soc_change, unit = "ha")[1, "area"]

Generate a random sample and its average in a 3 x 3 cell window
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# define the sample size
sample_size <- 100

# sample n non-NA locations
random_sample <- spatSample(soc_change, size = sample_size, method = "random",
as.points = TRUE, values = TRUE, na.rm = TRUE)

# get the centre cell numbers of each point
center_cells <- cellFromXY(soc_change, crds(random_sample))

# function to compute the 3 x 3 window cell indices around each sampled cell
# "r" refers to the raster
get_window_cells <- function(cell, winside = 3, r) {

# check that winside is an odd number 1
if (winside %% 2 != 1 || winside < 1) {
stop("winside must be an odd number 1")

3

# compute how many rows/cols to expand in each direction
half_win <- floor(winside / 2)

# get the row/column index of the central cell
rc <- rowColFromCell(r, cell)

# build the surrounding rows and columns
rows <- (rc[1] - half_win):(rc[1] + half_win)
cols <- (rc[2] - half_win):(rc[2] + half_win)

# keep only valid indices
rows <- rows[rows >= 1 & rows <= nrow(r)]
cols <- cols[cols >= 1 & cols <= ncol(r)]

# get cell numbers for the window
cells <- cellFromRowColCombine(r, rows, cols)

# remove cells that are NA in the raster
values_in_cells <- r[cells]
valid_cells <- cells[!is.na(values_in_cells)]

return(valid_cells)
# compute the window of each sampled cell

window_cells_list <- lapply(center_cells, get_window_cells,
winside = 3, r = soc_change)
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Plot random sample and its 3 x 3 cell window

# convert each set of cell indices to XY coordinates
xy_list <- lapply(window_cells_list, function(cells) {
xyFromCell (soc_change, cells)

b

# convert xy_list to a SpatVector
window_points <- vect(xy_list, crs = crs(soc_change))

# find the min-max values in the soc stock change raster
diff_range <- get_minmax(soc_change)

# get the absolute maximum to mirror the colour palette around it
max_abs <- max(abs(diff_range))

# indicate the palette colours
colour_palette <- colorRampPalette(c("red", "white", "blue"))

# define number of colour codes to generate from the colour palette
n_colours <- 100

# get the colour codes
colours <- colour_palette(n_colours)

# plot soc change
plot(soc_change,
main = pasteO("topsoil SOC stock change", "\n",
"between 1990 and 2020"), cex.main = 0.8,
plg = list(title = "ton/ha"), col = colours,
range = c(-max_abs, max_abs))
# add 3x3 window random sample points
plot(window_points, pch = 21, cex = 1,
col = "black", bg = "orange", add = TRUE)
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Compute the mean of each sampled 3 x 3 cell window and from it the SOC
stock change estimate

# extract values and compute mean for each window
mean_3x3 <- sapply(window_cells_list, function(x) {
vals <- soc_change[x] [[layer_name]]
mean(vals, na.rm = TRUE)

B

# calculate and print the estimated SOC stock change
comp_est <- mean(mean_3x3) * area_ha
pasteO("Estimated SOC stock change: ", round2(comp_est, 0, 10), " ton")

[1] "Estimated SOC stock change: 29190 ton"

Note that for some windows we use averages of fewer than nine point values because some
grid cells, such as those at the border of the study area, have NA cells around them. This
implies that cells with NA cells around them have a smaller inclusion probability, that
is they have a smaller probability to be included in the sample, because these cells are less
often a neighbour of a non-NA cell. But note also that when they are included they have a
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bigger weight, because their SOC change value is averaged with the SOC change of fewer other
cells. Strictly speaking, the statistical inference should account for these effects, but since the
window used here is relatively small the effects will not be large and we ignore them here.

To quantify the accuracy of the estimated SOC stock change above with a standard error
and confidence interval we first need to calculate the population variance. Note that this is
the same population variance as in Chapter 6. In Chapter 6 the population characteristic of
interest was the SOC stock change at point locations, but in this chapter it is the SOC stock
change of 3 x 3 windows. This characteristic has a different (i.e., smaller) population variance.
The code below calculates the population standard deviation of this characteristic.

Compute population standard deviation

# define a nxn moving window (matrix of weights)
winside <- 3
w <- matrix(1l, nrow=winside, ncol=winside)

# compute window means

window_means <- focal(soc_change, fun=mean, w = w,
na.policy='omit', # omit computing when a focal value is NA
na.rm=TRUE # exclude NA around focal cells

# focal() returns a raster, we compute its standard deviation
pop_sd <- global(window_means, fun = "std", na.rm=TRUE) [[1]] * area_ha

Compute standard error and confidence interval

# compute the standard error
SE <- pop_sd/sqrt(sample_size)

# compute the lower and upper limit of the confidence interval
lower_limit <- comp_est - 1.96*SE

upper_limit <- comp_est + 1.96%*SE

width_confintv <- upper_limit - lower_limit

# print

pasteO("Estimated mean (composite): ", round2(comp_est, O, 10), " ton")

paste0("95% confidence interval: [", round2(lower_limit, O, 10), ", ",
round2(upper_limit, 0, 10), "1")

pasteO("Confidence interval width: ", round2(width_confintv, 0, 10))
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[1] "Estimated mean (composite): 29190 ton"
[1] "95% confidence interval: [13930, 44440]"
[1] "Confidence interval width: 30510"

Recall from Chapter 6 that with n = 400 we obtained a much smaller 95% confidence interval
width of 17080 ton. This tells us that removing short-distance spatial variability by merging
soil samples within a 3 x 3 window did not help that much. It was certainly not enough to
justify a reduction of the sample size from n = 400 to n = 100, because we get a much wider
confidence interval. Apparently, the short-distance spatial variability of the SOC stock change
is not that large (see also Figure 6.3). We can verify this by comparing the population standard
deviation of the SOC stock change at poin locations with that of the SOC stock change for
3 x 3 windows:

Compare population standard deviations

# population standard deviation of point values

point_sd <- global(soc_change, fun = "std", na.rm=TRUE) [[1]] * area_ha

# population standard deviation of window averages

window_sd <- global(window_means, fun = "std", na.rm=TRUE) [[1]] * area_ha

# print

paste0("Point value population standard deviation: ",
round2(point_sd, 0, 10), " ton")

pasteO("Window value population standard deviation: ",
round2(window_sd, 0, 10), " ton")

[1] "Point value population standard deviation: 87160 ton"
[1] "Window value population standard deviation: 77830 ton"

The small reduction in the standard deviation tells us that merging soil samples in small
spatial windows does not really pay off. But there is nothing that stops us from merging soil
samples from far away locations. The R code below does this by randomly sampling 9 grid
cells in the example area, averaging the SOC stock change of these 9 grid cells, repeating
this procedure n = 100 times, and estimating the SOC stock change and the associated
confidence interval from the sample of 100 averages of 9 point values each. We expect a
narrower confidence interval than before, since we are not restricted to only removing short-
distance spatial variation.

All calculations are done in the code chunk below. Note that the code below calculates the
standard error using the sample variance instead of the population variance, since calcu-
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lation of the population variance would be very cumbersome in this case. As mentioned in
Chapter 3, in practice one would always use the sample variance instead of the population
variance, because the latter is unknown. The two variances will be very similar in case of large
sample sizes, but for smaller sample sizes a correction has to be made: the normal distribution
must be replaced by a Student t-distribution with n — 1 degrees of freedom. This will

slightly widen the confidence interval, as illustrated in the code below.

Random composite sampling

# indicate the composite size
composite_size <- 9

# indicate how many times to sample
n_sample <- 100

# initialize vector to store the mean of each iteration
sample_means <- c()

for (i in seq_len(n_sample)){
# sample 9 non-NA locations
random_sample <- spatSample(soc_change, size = composite_size,
method = "random", as.points = FALSE,
values = TRUE, na.rm = TRUE)

# select the first column, which contains the extracted soc values
random_sample <- random_sample[[1]]

# compute the average SOC stock for this sample
sample_mean <- mean(random_sample)

# store in vector
sample_means <- c(sample_means, sample_mean)

# compute sample mean and multiply to convert to ton

rdm_comp_est <- mean(sample_means) * area_ha

pasteO("Estimated SOC stock change: ",
round2(rdm_comp_est, 0, 10), " ton")

[1] "Estimated SOC stock change: 39520 ton"
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Random composite standard error and confidence interval

# estimate standard deviation
rdm_est_sd <- sd(sample_means) * area_ha

# compute the standard error
SE <- rdm_est_sd/sqrt(n_sample)

# compute the lower and upper limit of the confidence interval

# we use the t-distribution instead of the normal distribution

# check yourself that qt(0.975, df = n_sample-1) is bigger than 1.96
lower_limit <- rdm_comp_est - qt(0.975, df = n_sample-1)*SE
upper_limit <- rdm_comp_est + qt(0.975, df = n_sample-1)*SE
width_confintv <- upper_limit - lower_limit

# print

pasteO("Estimated mean (random composite): ", round2(rdm_comp_est, O, 10), " ton")

paste0("95% confidence interval: [", round2(lower_limit, O, 10), ", ",
round2(upper_limit, 0, 10), "1")

pasteO("Confidence interval width: ", round2(width_confintv, 0, 10))

[1] "Estimated mean (random composite): 39520 ton"
[1] "95% confidence interval: [34120, 44920]"
[1] "Confidence interval width: 10800"

We now get a confidence interval that is narrower than the one obtained in Chapter 6, even
though we used a sample size of n = 100 instead of n = 400. In fact we could have anticipated
this result, because what we effectively did is collect soil samples from 100 - 9 = 900 randomly
selected locations. Thus, the confidence interval width that we obtained should be about
\/9/7 = 1.5 times smaller than that obtained in Chapter 6, which is indeed the case (you may
check this yourself).

This chapter showed that much can be saved on laboratory costs by taking composite soil
samples, except when merging is confined to small spatial windows and there is little short-
distance spatial variability.

Further savings could be obtained by using spectral SOC measurements, since these are much
cheaper than wet-chemistry measurements. But spectral observations tend to have larger mea-
surement errors than wet chemistry observations, and ideally these errors should be included in
the statistical inference. In fact, wet chemistry measurements are also not free of errors. It was
beyond the scope of this tutorial to account for field and laboratory measurement errors, and
so we assumed that all SOC stock observations were error-free. But we advise that projects
always check on the quality of the laboratory measurements, by letting laboratories analyse

67



a few anonymised duplicate soil samples and calculating summary statistics of the differences
between duplicate observations.
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8 Conclusion

This tutorial explained the use of sampling theory from statistics for estimation of the SOC
stock and SOC stock change in an area. We covered simple random sampling and stratified
random sampling, and also compared static and synchronous sampling for estimation of SOC
stock change over time. We explained the theory but the emphasis was on practical application
using the R language for statistical computing. Using synthetic data from an example area
we could demonstrate how the theory is applied in practice and could verify the theoretical
findings with numerical experiments.

Obviously there is much more to sampling theory than what was covered in this tutorial.
Readers who wish to dig deeper into the topic are advised to read De Gruijter (2006) and
Brus (2022). The first of these books also addresses model-based estimation of spatio-temporal
averages and totals (including geostatistical modelling), while the second provides R scripts to
all methods used in the book. Both books are at a higher level than this tutorial, but we hope
that with this tutorial readers have become familiar with the topic and are well-prepared and
eager to make a next step.

Readers who would like to learn more about the measurement and modelling of SOC stock
changes in the context of Monitoring, Reporting and Verification (MRV) are invited to read
Ceschia et al. (2025), Batjes et al. (2024), Smith et al. (2020) and visit irc-orcasa.eu.
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