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A B S T R A C T

Nowadays there is an increasing effort for raising global awareness for the importance of soils to ensure food
security, to improve agricultural and environmental planning and monitoring, and to establish effective and
sustainable land management policies to counteract soil degradation. This study presents the INFOSOLO legacy
database as the first effort to develop a soil information system in Portugal, suitable to compile soil data pro-
duced in the country, and to support stakeholders and land managers in decision-making. The database currently
includes soil data from a set of 9934 horizons/layers studied in 3461 soil profiles across the country between
1966 and 2014. Data was extracted from scattered soil surveys, research projects, and academic studies carried
out by public Portuguese and other European institutions, with a series of validation tests and harmonization
procedures being implemented in order to access and improve the quality of the data. The importance of the
INFOSOLO legacy dataset was discussed and exemplified with the analysis of the spatial and temporal dis-
tribution of selected soil properties, namely the organic carbon content, pH, and cation exchange capacity. For
these properties, 1 km grid maps were also developed for the topsoil horizons/layers in Portugal using different
spatial modelling approaches. To highlight the importance of using INFOSOLO for soil characterization, the EU-
wide soil database LUCAS was used to compare both datasets in terms of data distributions, spatial continuity
and accuracy of modelling outputs. The comparison also included the digital soil maps provided by the SoilGrids
product for Portugal. The comparison results highlighted specific areas in the country for which INFOSOLO is
capable to deliver accurate but also more reliable predictions when compared with the LUCAS and SoilGrids
results. Thus, INFOSOLO provides the basis for improving soil information in the country and for raising national
awareness of the importance of soil resources to the country's development.

1. Introduction

Soils serve as growing medium for feed, food, fibre, and fuel; act as a
filter and reservoir for water and nutrients; contribute to climate reg-
ulation by acting as a pool for carbon and greenhouse gases (N20 and
CH4); provide habitat for billions of organisms, contributing to biodi-
versity; act as a source of raw materials like sand, clay, and wood;
support plants, animals, and infrastructures; and act as an aesthetic and
cultural resource (Blum, 2005; Dominati et al., 2010; Robinson et al.,
2012; Hartemink, 2015). Despite all vital services provided to society,
soil degradation processes, which include erosion, organic matter de-
cline, compaction, salinization, landslides, contamination, sealing, and
biodiversity decline, remain a critical problem in many regions in the

world (Eswaran et al., 2001; Reich et al., 2001; Montanarella, 2007)
since stakeholders, policy makers and society at large still fail to per-
ceive the intrinsic relations between soil health and sustainability.

Shifting such paradigm can only be accomplished by raising global
awareness of the importance of soils for food security and essential
ecosystem functions, and by establishing sound and sustainable land
management policies to counteract soil degradation. Global initiatives
like the Global Soil Partnership (www.fao.org/global-soil-partnership/
en/) can definitely help promoting the importance of soils to human
welfare. Also, initiatives such as the soil-net.com website (www.soil-
net.com/) from the Cranfield University, UK, and the Soils Challenge
Badge from the FAO (2015), where soil services are introduced to
kindergarten, primary and high school students can be of extreme
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value. The same can be argued for the work carried out by organisations
as ISRIC - World Soil Information, striving to increase awareness and
understanding of soils in major global issues (www.isric.org/utilise/
global-issues). At the political level, the implementation of policies such
as EU Thematic Strategy for Soil Protection (COM(2006)231 final) are
essential to trigger actions and plans at the national scale aiming for the
protection and sustainable use of soil and promoting its restoration
(Ballabio et al., 2016).

However, the definition and assessment of sound and sustainable
land management policies remain a difficult challenge, being many
times hampered due to the lack of updated, comparable, and reliable
soil data (Montanarella, 2007; Tóth et al., 2013a, 2013b). Reliable land
management decisions at field or catchment scales require detailed soil
information, including knowledge of the spatial variability of soil
properties with depth and across geographic areas. However, most
conventional soil survey maps present a series of polygons delineated
mostly according to qualitative criteria, which are generically capable
of portraying soil heterogeneity and to describe structural patterns
across the landscape (Lin, 2003, 2010), but which do not adequately
express the complexity of soils within the same mapping units (Sanchez
et al., 2009). Also, conventional soil survey maps are most times as-
sociated with data measured in representative soil profiles, which may
be obsolete or out-of-date (Lin et al., 2006; Hartemink et al., 2013;
Ramos et al., 2013).

As land management models and decision supporting tools become
more sophisticated, there is thus the increasing need of developing
modern soil maps based on detailed soil information in order to im-
prove agricultural and environmental planning and monitoring
(Sanchez et al., 2009; Panagos et al., 2012; Shangguan et al., 2013).
This is the main objective of the GlobalSoilMap.net consortium
(Sanchez et al., 2009; Arrouays et al., 2014, 2017), which aims to make
a new digital soil map of the world using state-of-the-art and emerging
technologies for mapping and predicting soil properties at fine resolu-
tion. An example of this effort are the recently released global SoilGrids
at 1 km and 250 m resolution (Hengl et al., 2014, 2017), which are
produced according to GlobalSoilMap specifications. Also, the Harmo-
nized World Soil Database (HWSD; FAO/IIASA/ISRIC/ISS-CAS/JRC,
2012) shares a similar goal, combining the 1:5 000 000 scale FAO-
UNESCO Soil Map of the World with the information from the European
Soil Database (Lambert et al., 2003; Tóth et al., 2013b), the Global and
National Soils and Terrain Digital Databases (SOTER, van Engelen and
Dijkshoorn, 2013), the World Inventory of Soil Emission Potentials
(WISE; Batjes, 2009), and the soil map of China at 1:1 million scale (Shi
et al., 2004).

Despite all the above mentioned initiatives and advances on soil
mapping techniques, the available soil information seems still in-
sufficient for many regions in the world, including Portugal. The WISE
dataset (Batjes, 2009), for example, and also the World Soil Information
Service (WoSIS) dataset (Batjes et al., 2016), contains information of
10,253 soil profiles collected throughout the world over the last dec-
ades, but only 10 of these are actually from Portugal. An improved set
with physical and chemical soil data was made available in 2009
through the LUCAS (Land Use/Cover Area frame Statistical Survey) soil
database (Tóth et al., 2013b), a project promoted under the EU The-
matic Strategy for Soil Protection as a response to the lack of soil quality
data. The LUCAS database was the first attempt to construct a harmo-
nized pan-European topsoil (0–20 cm) geodatabase, which could serve
as a baseline for EU-wide soil monitoring. LUCAS was the dataset used
in SoilGrids (Hengl et al., 2017) to generate soil predictions for Por-
tugal. To conduct LUCAS, the EU' territory was divided using a
2 × 2 km2 grid whose nodes constituted around 1.1 million points.
From this, a sample of 270,000 points were selected on the basis of
stratification information, and 465 points were allocated to Portugal.
Nonetheless, these numbers of available soil data for Portugal seem
surprising small considering that the country has had active soil survey
services since the 1940's (first in “Estação Agronómica Nacional”,

currently included in “Instituto Nacional de Investigação Agrária e
Veterinária”, and later in “Serviço Nacional de Reconhecimento
Agrário”, now part of “Direcção Geral de Agricultura e do De-
senvolvimento Rural”), and that there was a significant investment on
mapping soils in different regions of Portugal during the 1990's and
2000's (e.g., Agroconsultores and Geometral, 1999; Divisão de Solos,
2003; Geometral and Agroconsultores, 2004; DGADR, 2007).

Thus, since data is only valuable when used by technicians, policy
makers, and scientists (Lin et al., 2006), why is soil information pro-
duced in Portugal not put to a better use? Despite many valid con-
straints documented in Madeira et al. (2004) and Gonçalves et al.
(2005), the main reasons seem to be lack of coordination, with data
being scattered among several different institutions, and the non-
existence of a modern soil information system capable of storing all soil
information produced in Portugal, including that from all Universities,
Polytechnics, and State laboratories dedicated to soil science. Only by
overcoming these two constraints it will then be possible to assess the
quality of the existing data, identify the main gaps on soil information,
define the needs for future studies and research, and properly evaluate
the impact of national and European policies on land and the en-
vironment. One valid example of what should be done with Portuguese
soil data is the PROPSOLO database (Gonçalves et al., 2011; Ramos
et al., 2013, 2014), specifically developed for storing all reliable in-
formation on soil hydraulic properties determined in the country, and
which was already included in the European Hydropedological Data
Inventory (EU-HYDI; Weynants et al., 2013) in order to develop the
new generation of hydraulic pedotransfer functions for Europe (Tóth
et al., 2014). The successful example of the PROPSOLO database is now
extended to include other soil data and create a unified database named
INFOSOLO.

Therefore the objectives of this paper are: (i) to present the
INFOSOLO relational database as a first step towards the development
of a modern soil information system in Portugal; (ii) to highlight the
importance of using the INFOSOLO legacy dataset to understand the
spatial and temporal distribution of selected soil properties, namely the
organic carbon content – OC (%), pH, and cation exchange capacity –
CEC (cmolc/kg); and (iii) to illustrate the capabilities of the new da-
tabase to characterize national soil spatial patterns by providing 1 km
resolution maps of topsoil OC, pH and CEC at the national level. These
selected soil properties are included in the minimum dataset established
by the GlobalSoilMap (GSM) consortium to produce relevant maps for
decision making (Sanchez et al., 2009).

To accomplish objectives ii) and iii), we compared the soil in-
formation generated using INFOSOLO with the information obtained
using the European dataset LUCAS. INFOSOLO is a legacy dataset with
data collected by different institutions, with no specific or comparable
sampling design. On the other hand, LUCAS sampling followed a sta-
tistical design but the data was collected for a specific year (2009).
Therefore, our analysis aimed to understand if there were significant
differences in the soil characterization provided by the two datasets.
For mapping the soil properties at the national level, we also tested two
spatial modelling approaches to evaluate the importance of including
environmental covariates to explain the spatial distribution of OC, pH
and CEC. The modelling outputs were assessed in terms of their global
accuracy and expert knowledge. The final national maps were further
compared with the worldwide soil map SoilGrids. This comparison
complemented the objectives of this study since SoilGrids is currently
the only digital soil map available for Portugal.

Our study follows the commemorations of the International Year of
Soil 2015 in Portugal, and provides the basis for improving soil in-
formation in the country, for informing a future national soil mon-
itoring program, for updating existing digital soil information, and,
ultimately, for raising national awareness of the importance of soil re-
sources to environmental wellbeing and socio-economic development.
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2. Material and methods

2.1. The database

The INFOSOLO database is the most comprehensive effort ever
made to organize soil information in Portugal. It currently includes a set
of 9934 horizons/layers studied in 3461 soil profiles across the country
(Fig. 1), from which 570 only contain data for the topsoil horizon/layer.
All information of a large number of soil related parameters, namely on
physical and chemical properties, were obtained from soil surveys, re-
search projects, and academic studies performed in public Portuguese
and other European institutions (Table 1) over the last few decades
(1966–2014). These sampling campaigns were not aligned with a na-
tional monitoring program, rather they were funded by a range of
projects and surveys with different interests, from regional soil mapping
to agricultural developments. All data compiled into the database was
available in paper reports, thesis, and online. Most were freely accessed,
but in some cases data was protected under a license agreement (e.g.,
Tóth et al., 2013a).

INFOSOLO is a georeferenced relational database developed for the

MYSQL 5.6 (www.mysql.com/) operating system. It is divided into four
simple and intuitive tables (Fig. 2): (i) SOIL, which includes the iden-
tification of the soil profiles (Profile_ID) and corresponding geo-
graphical coordinates (Longitude, Latitude), elevation (Z), year of
sampling (Year_), WRB Reference Soil Groups and qualifiers (Soil,
Qualifier 1–3; IUSS Working Group, 2006), parent material (par-
ent_material), and land use (Land_use), as well as an indication whether
the geographical coordinates were available or had to be estimated
(Coordinates; see Section 2.2), the name of the institution responsible
for the data (Institution, Table 1), and the reference from which data

Fig. 1. Location of INFOSOLO and LUCAS sampling points (national distribution and per decade).

Table 1
Institutions responsible for the data included in INFOSOLO.

Institutions Number of soil
profiles

Frequency
(%)

Direcção Geral de Agricultura e do
Desenvolvimento Rural

733 21.2

Direcção Regional de Agricultura e Pescas do
Norte

1233 35.6

Instituto da Conservação da Natureza e das
Florestas

103 3.0

Instituto Nacional de Investigação Agrária e
Veterinária

622 18.0

Instituto Superior de Agronomia 79 2.3
Joint Research Centre 465 13.4
Sociedade Portuguesa da Ciência do Solo 4 0.1
Universidade de Évora 30 0.9
Universidade de Trás-os-Montes e Alto Douro 192 5.5

ID1 pk
Profile_ID
Longitude
Latitude
Z
Coordinates
Year_
Soil
Qualifier1
Qualifier2
Qualifier3
WRB_M fk
Parent_material
Land_use
Institution
Reference

Soil

ID2     pk
ID1 fk
Hor_top
Hor_bot
Hor_name
Coarse
CS
FS
Si
C
Texture_M fk
BD
BD_M fk
OC
OC_M fk
N
N_M fk
P

Properties

P_M fk
K
K_M fk
pH
pH_M fk
CaCO3
CaCO3_M fk
Ca_ex
Mg_ex
K_ex
Na_ex
Cations_M fk
CEC
CEC_M fk
V
Theta_FC
Theta_WP
Theta_M fk

ID3           pk
Method
Reference_Method
Parameter

ID4           pk
Attribute
Table_ID
description
units

Description Methods

1:n

1:n1:n

Fig. 2. Structure and attributes included in the INFOSOLO database (pk and fk corre-
spond to primary and foreign keys, respectively).
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was extracted; (ii) PROPERTIES, which includes the top (Hor_top) and
bottom (Hor_bot) depths of each horizon/layer, the symbol re-
presenting the horizon/layer (Hor_name) (FAO, 2006), and corre-
sponding analytical data, i.e., information on coarse elements (Coarse),
coarse sand (CS), fine sand (FS), silt (Si), clay (C), bulk density (BD),
organic carbon (OC), total nitrogen (N), extractable phosphorus (P),
extractable potassium (K), pH, CaCO3, exchangeable cations (Ca_ex,
Mg_ex, K_ex, and Na_ex), cation exchange capacity (CEC), base sa-
turation (V), and soil water content at field capacity (Theta_FC), and at
the wilting point (Theta_WP); (iii) METHODS, which holds the in-
formation on the methodologies used for analytical data characteriza-
tion or soil profile classification (Method), their references (Refer-
ence_Method), and the soil parameter related to that methodology
(Parameter); and (IV) DESCRIPTION, which basically provides the
metadata for the database, i.e., it lists the name of the attributes in-
cluded in the database (Property), the tables where they can be found
(Table_ID), their meanings (description), and units of the variables (in
the case of the geographical coordinates, elevation, and analytical
data).

Tables SOIL and PROPERTIES also contain foreign keys (all attri-
butes ending with _M) that relate a corresponding analytical determi-
nation or soil classification to its methodology or soil classification
system, respectively, found in table METHODS. It is a simple linkage
procedure already used in the Portuguese soil hydraulic properties
database (Gonçalves et al., 2011) and recently adopted also in the EU-
HYDI database (Weynants et al., 2013). All field attributes can hold null
data (i.e., absent data) with the exception of Profile_ID. Similar prin-
ciples as those adopted in INFOSOLO can also be found, for example, in
Leenaars et al. (2014a).

2.2. Quality assurance and harmonization

The INFOSOLO database holds data from many different studies, not
always with related objectives. Thus, the level of detail of soil in-
formation varied between datasets, with the quality of data being as-
sessed through a series of validation tests. The location of the soil
profiles is one of the best examples where the level of detail differed
between datasets, being also pointed out as a critical issue in similar
studies (e.g., Leenaars et al., 2014b). The geographical coordinates
were available for 49% of the soil profiles mainly due to a recent release
from the “Direcção Geral de Agricultura e do Desenvolvimento Rural”
(Table 1). However, the coordinates of the remaining soil profiles in-
cluded in INFOSOLO had to be estimated based on broad references
given in the reports. This was the case of the representative soil profiles
found in most soil survey studies (mainly the oldest data), where the
coordinates were never made available and, in most cases, are now lost.
A “likely” location was thus included in INFOSOLO after relating each
soil profile with the corresponding soil mapping units located closest to
the farm, place, village, or civil parish mentioned in those reports. The
field attribute Coordinates found in table SOIL refers whether the lo-
cation of the soil profile was available or had to be estimated (i.e., if it
corresponds to a “likely” location). Thus, users can make their own
decision on using that information or not. Geographical coordinates
were all converted to longitudes and latitudes in decimal degrees
(WGS84), but can also be accessed using a local projection system
(Lisboa Hayford Gauss IGeoE) if necessary. Elevation data, when not
available, was obtained from military maps, in consistency with the
geographical coordinates defined for each soil profile.

The soil profiles included in INFOSOLO were originally available
under different soil classification systems. This was perhaps the major
constraint when handling soil information from Portugal. Most soil
profiles studied south of the Tagus River were classified under the
Portuguese soil classification system (Cardoso, 1965, 1974), while
those studied in the north followed different versions of the FAO clas-
sification system. No harmonization of soil classification data was ever
attempted. In this study, an effort was made to convert the profiles

classified according to the Portuguese soil classification system into the
WRB 2006 (IUSS Working Group, 2006) framework. The name of the
soil units, soil description (when available), and corresponding analy-
tical data were considered when converting one soil classification into
the other. Some expert judgment had also to be considered. The soil
profiles classified according to older WRB versions were updated to
WRB 2006. The soil profiles already classified according to WRB 2006
were also revised as some were considered questionable. As a result,
INFOSOLO now includes 2895 soil profiles classified according to WRB
2006, while the remaining 566 do not have the necessary information
for soil classification (Table 2), mostly because only the topsoil hor-
izon/layer was characterized (e.g., Tóth et al., 2013a).

Parent material was defined following the nomenclature used in the
European Soil Database (Lambert et al., 2003). Only the major class
levels (Table 3) were considered since the detail of information varied
between datasets. The consistency of the dataset was thus found here to
be preferable to detail. Some expert judgment was also considered in
order to define the parent material for soil profiles that did not include
that information but which could be estimated based on the soil type
and description.

Land use information was provided for 2703 soil profiles (Table 4).
The level of detail was also found to differ greatly between datasets, but
some effort was made to define land use according to the LUCAS 2009
classification scheme (Eurostat, 2009).

The soil properties included in INFOSOLO (Fig. 2) were those more
commonly found in the studies from where soil information was ob-
tained. In this database, the particle size distribution (PSD) was defined

Table 2
Soil reference groups available in the database.

Soil reference groups Number of soil profiles Frequency
(%)

Acrisols 48 1.4
Alisols 24 0.7
Anthrosols 441 12.7
Arenosols 57 1.6
Calcisols 127 3.7
Cambisols 632 18.3
Ferralsols 25 0.7
Fluvisols 231 6.7
Gleysols 19 0.5
Histosols 3 0.1
Leptosols 185 5.3
Lixisols 6 0.2
Luvisols 288 8.3
Planosols 19 0.5
Plinthosols 3 0.1
Podzols 17 0.5
Regosols 592 17.1
Solonchaks 5 0.1
Solonetz 7 0.2
Stagnosols 2 0.1
Umbrisols 59 1.7
Vertisols 105 3.0
Not classified 566 16.4

Table 3
Nomenclature of parent material.

Major class level Number of soil profiles Frequency
(%)

Consolidated clastic sedimentary rocks 340 9.8
Sedimentary rocks 168 4.9
Igneous rocks 1027 29.7
Metamorphic rocks 541 15.6
Unconsolidated deposits 800 23.1
Eolian deposits 40 1.2
Organic materials 3 0.1
No information 542 15.7
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for particles of diameter < 2 μm (C), 2–20 μm (Si), 20–200 μm (FS),
200–2000 μm (CS), and> 2000 μm (coarse elements) (Fig. 3). These
textural classes follow the Portuguese classification system (Gomes and
Silva, 1962) and they are based on the International Soil Science So-
ciety (ISSS) particle limits (Atterberg scale). As a result, most texture
data found for Portugal was already in accordance with these particle
size limits. The exceptions were the data from Tóth et al. (2013a) and
De Vos and Cools (2011), which used the particle size limit of 63 μm to
divide sand from silt conform the standards adopted by FAO (2006),
and Batjes (2009), which used the USDA particle size limit of 50 μm to
make that same division conform the standards of USDA (Soil Survey
Staff, 2014). Smoothing splines (Nemes et al., 1999) were fitted to the
cumulative particle size limits of 0, 2, 63 or 50, and 2000 μm to obtain
the cumulative percentages of particles at 20 and 200 μm. Smoothing
splines were adjusted to the data with the Curve Fitting Toolbox 3.3

available in MATLAB R2012b version 8.0.0.783 (MathWorks Inc., Na-
tick, MA, USA). The resulting RMSE (root mean square error) values
were 0.6, 5.2, and 1.2% when comparing estimates with measured data
available in Tóth et al. (2013a), De Vos and Cools (2011), and Batjes
(2009), respectively. Additional testing was performed to all data to
confirm that PSD (< 2000 μm) would sum 100%. Those that did not
summed between 97 and 103% were considered to be erroneous and
were not included in INFOSOLO, while those that were within that
interval were corrected by distributing the error among the various
texture classes (when similar weighted) or by adjusting the percentage
of the dominant texture classes.

Bulk density data was only considered if determined on undisturbed
soil samples (corresponding to the whole earth fraction including
coarse fragments). Even so, data from Geometral and Agroconsultores
(2004) was not included in INFOSOLO due to the low correlation value
(r = −0.29) found between bulk density data and water content at
field capacity; a value less than half of those computed from Ramos
et al. (2014), Divisão de Solos (2003), and DGADR (2007) datasets.
Furthermore, values falling outside the range 0.90–1.95 g cm−3 were
not included as they were considered unrealistic for Portugal's con-
tinental area.

When necessary, organic matter (OM) data was converted into or-
ganic carbon (OC) content; P2O5 was converted into P; and K2O was
converted into K. OC, N, P, and K data were then checked for extreme
values. The C/N ratio was computed and corrected when C/N < 7, by
adjusting OC or N content (Kristensen et al., 2015). Soil reaction (pH)
was checked for values falling outside the possible range (0–14).
Nonetheless, four values where pH < 3 were removed as they were
considered unrealistic. CaCO3 data was analysed for values falling
outside the possible range (0–100%), and to confirm that CaCO3 > 0
would only be possible in horizons/layers with pH > 6.

CEC data was checked for extreme values, while base saturation (V)
was tested for values falling outside the possible range (0–100%). Two
problems were immediately identified in part of the data. In calcareous
soils, base cations often summed> 100%. The main reason was at-
tributed to the use of less adequate methodologies like the acid and
neutral pH extractants used, for example, with the ammonium acetate
at pH 7.0 method (Schollenberger and Dreibelbis, 1945), which may
significantly overestimate Ca2+ and to a lesser extent Mg2+ (Sumner
and Miller, 1996). The dominant cations (Ca2+ and sometimes Mg2+)
were thus corrected by reducing their concentrations until base sa-
turation summed 100%. In saline soils, base cations occasionally also
summed> 100%. The main reason seemed to be that the reported
exchangeable cations were actually extractable cations. The former
could only be obtained if the soluble cations had also been determined
and subtracted from the extractable forms, which was often not the
case. In these situations, the error was distributed among the four ca-
tions (Ca2+, Mg2+, K+, and Na+) based on the proportion of each
element, and concentrations were lowered until base saturation
summed 100%.

Values of Theta_FC and Theta_WP were indirectly estimated from
sand, silt, and clay content using the ternary diagrams developed in
Ramos et al. (2014) with the empirical best linear unbiased predictor
algorithm (Lark et al., 2006). These diagrams correspond to kriging
surfaces which interpolate existing water content observations in the
PROPSOLO database (Gonçalves et al., 2011) across the texture triangle
with a relatively low error (RMSE ≤ 0.040 cm3 cm−3) when compared
with other pedotransfer interpolation techniques that require the same
data inputs (Ramos et al., 2014). Water content data in INFOSOLO may
thus be considered redundant since it is not actually measured data, but
something that can be obtained from other soil properties. The main
reasons for adopting such procedure were related to the importance of
Theta_FC and Theta_WP for computing water and nutrient budgets
combined with the lack of information at the national scale; the fact
that soil water content information available in most Portuguese soil
survey studies may be considered obsolete as it was determined on

Table 4
Major land uses.

Land use Number of soil profiles Frequency
(%)

Arable crop 15 0.4
Irrigated crop 95 2.7

Irrigated arable crop 465 13.4
Rainfed crop 16 0.5

Rainfed arable crop 413 11.9
Rice 6 0.2

Cotton 2 0.1
Horticulture 152 4.4
Melon 3 0.1
Sugar beet 12 0.3

Mixed crops 9 0.3
Forest 145 4.2
Cedars 1 0.0
Chestnuts 11 0.3
Eucalyptus 15 0.4
Pine trees 115 3.3
Oak trees 29 0.8

Pasture 201 5.8
Fruit trees 35 1.0
Olive grove 197 5.7
Vineyard 148 4.3
Woodland 74 2.1
Fallow 541 15.6
Golf course 3 0.1
No information 758 21.9

Fig. 3. Textural distribution of the dataset (S, sand; LS, loamy sand; SL, sandy loam; L,
loam; SCL, sandy clay loam; CL, clay loam; SC, sandy clay; C, clay; SiC, silty clay; SiCL,
silty clay loam; SiL, silty loam; Si, silt).
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disturbed soil samples or simply lacks the quality necessary to be
considered in modern hydrological studies; and the existence of the
PROPSOLO (Gonçalves et al., 2011) and EU-HYDI (Weynants et al.,
2013) databases, already developed specifically for storing reliable soil
hydraulic property information.

While some of the soil properties included in INFOSOLO rely on the
same principles, others were determined using quite different meth-
odologies. Most studies used the pipette method for determining clay
and silt, and sieving for measuring the sand components (Gee and Or,
2002). The main difference between studies was thus the particle size
limits adopted to distinguish silt from sand. Also, the methods used for
determining bulk density were almost always to dry a volumetric
sample in the oven at 105 °C for 48 h, only varying the sample size. On
the other hand, soil organic carbon was determined using seven dif-
ferent methodologies. The Walkley-Black method (Nelson and
Sommers, 1996) was used in 48% of the available data. No harmoni-
zation was yet considered in order to relate results from different
methodologies. Some studies used more than one method for de-
termining the same soil property. In the cases where it was not possible
to distinguish between methods, all cited methods were related to that
soil property using the reference “Not discriminated (method 1, method
2 …)”.

2.3. Spatial and temporal distribution of soil properties

To highlight the importance of using the INFOSOLO legacy dataset
to understand the spatial and temporal distribution of selected soil
properties (OC, pH, and CEC), the INFOSOLO data was divided ac-
cording to the sampling region – north, central and south (Fig. 1). These
three regions are related with the administrative areas proposed by the
European Union Statistical Regions (NUTS II) and present distinctive
geographic and climate conditions that create different landscapes from
north to south (in this study, the south region comprised Lisbon,
Alentejo, and Algarve NUTS II). In the north, the landscape is highly
diverse due to geomorphology, lithology, land cover, rock outcrops,
climate, and a wide variety of land use systems (e.g., Douro vineyards).
Precipitation differs significantly, with the greatest values (e.g.,
1466.5 mm in Viana do Castelo (1981–2010); www.ipma.pt) being
registered in Minho (NW region) due to the topographic characteristics
of the region (Fig. 4). The average temperatures also differ sub-
stantially, with Trás-os-Montes (NE region) exhibiting larger ampli-
tudes between seasons (e.g., 4.5–21.7 °C in Bragança (1981–2010);
www.ipma.pt). In contrast, the south region is characterized by greater
average temperature (e.g., 9.7–33.3 °C in Beja (1981–2010); www.
ipma.pt), lesser average rainfall (e.g., 557.8 mm in Beja (1981–2010);
www.ipma.pt), extensive agriculture areas, and mostly by flat land-
scapes (Fig. 4). The highest elevations are located in the eastern and NE
areas of the country, clearly distinguishing the north and central re-
gions from the south.

For each region, a comprehensive data analysis was conducted to
identify spatial and temporal trends observed for measured OC (%), pH,
and CEC (cmolc/kg) values in 3397 INFOSOLO topsoil samples, which
were mostly (70%) collected from 0 to 25 cm. The same analysis was
carried out for the LUCAS dataset (465 topsoil samples) to compare
statistically both datasets using exploratory data analysis and spatial
continuity analysis. The LUCAS sampling campaign was conducted
following a properly designed survey to collect soil data at the national
scale for one specific time period (year 2009). Hence, the data analysis
aimed to ascertain if the LUCAS statistics and spatial continuity patterns
contradicted significantly the ones derived using the legacy dataset
INFOSOLO. This was deemed important to justify the use of INFOSOLO
to characterize the spatial and temporal distribution of OC, pH and CEC
at the national level.

Exploratory data analysis consisted in the description of the spatial
distribution of sampled OC, pH and CEC complemented with basic
statistics and box-plots. Additionally, data distributions were

represented with histograms and compared statistically. This informa-
tion was relevant for the INFOSOLO and LUCAS comparison and in-
terpretation of the spatial modelling results.

For the spatial continuity analysis, experimental variograms were
used to describe the spatial patterns revealed by the INFOSOLO and
LUCAS datasets for each selected soil property. The variogram allows to
describe how a value measured at a sampling location is expected to be
correlated with values close by within a certain range (also known as
spatial autocorrelation; Webster and Oliver, 2007). This is measured by
calculating the average semivariance among pair of points located a
distance (lag) h apart (Isaaks and Srivastava, 1989). In this study, the
experimental variogram was built by plotting the semivariance values
γ(h) against the lags h without considering a preferential direction.
These omnidirectional experimental variograms calculated using OC,
pH, and CEC point data were used to describe and compare the regional
and national spatial continuity within both INFOSOLO and LUCAS.

2.4. Spatial modelling of soil properties at the national level

Digital soil mapping (DSM) is currently adopted in most soil science
studies as a framework to characterize the spatial pattern of soil
properties. DSM has become widely accepted as a concept and frame-
work after the work presented by McBratney et al. (2003), which re-
cognizes the advantages in producing digital soil information using
spatial modelling algorithms incorporating available covariates (pre-
dictor variables) related to the expected spatial and temporal dis-
tribution of soil properties. The application of DSM to improve the
quality and availability of soil information has been extended to the
world scale with the GSM project, the first world-wide initiative that
aims to encourage the use of state-of-the-art DSM technologies to pre-
dict and then map soil properties at a fine (100 m) resolution (Sanchez
et al., 2009).

In the context of GSM, the collection of legacy datasets (i.e., “pre-
existing, georeferenced field or laboratory measurements”; Sanchez
et al., 2009) is an important input for DSM. However, the quality of
legacy data obtained through traditional soil surveys might be impacted
by poor sampling design (generally empirical and lacking statistical
criteria) resulting in sampling bias (Carré et al., 2007). Also, traditional
soil sampling is often expensive and time-consuming, which also results
in spatial coverage limitations. This particular aspect is conveniently
covered in the DSM framework with the use of spatially continuous
covariates. With the recent developments in geospatial technologies,
soil-related covariates are easily (and often freely) acquired at different
resolutions making it possible to include them as predictors in model-
ling algorithms. As for these, a choice exists between algorithms in-
corporating spatial correlation (spatial modelling), and those exploring
linear and non-linear relationships between variables but not using
spatial correlation (machine learning or non-spatial modelling). Al-
though there is no “best” choice, spatial models seem to perform better
in terms of achieving higher prediction accuracy (Horta et al., 2013).

Spatial modelling integrating environmental covariates was used by
Rawlins et al. (2009), Kempen et al. (2010), Hengl et al. (2014), Aksoy
et al. (2016), and Ballabio et al. (2016) to predict soil properties at
different scales (from regional to continental). In this work, spatial
modelling was performed to predict OC, pH and CEC at the national
level using a kriging-based algorithm, namely an empirical best linear
predictor (EBLUP) incorporating a linear mixed model built with a set
of environmental soil-related covariates (Sections 2.4.1 and 2.4.2). This
was done using both INFOSOLO and LUCAS as input data to later
compare their mapping outputs (Section 2.4.3).

To evaluate the importance of including environmental covariates
in the soil maps, modelling was also performed using raw data only
(i.e., without considering the contribution of covariates). This was done
using a second kriging-based predictor (ordinary kriging, Section
2.4.2). The results were then compared with the previous modelling
using EBLUP to conclude which map output should be chosen to
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describe the spatial patterns expected for OC, pH and CEC at the na-
tional level.

Comparison of spatial modelling outputs (Section 2.4.3) was done
considering model validation statistics and expert knowledge. The final
national maps were further compared with the digital soil maps cur-
rently available for Portugal, namely, the SoilGrids product (Hengl
et al., 2017).

2.4.1. Environmental covariates
Choosing the right covariates to model the spatial distribution of

OC, pH and CEC is to balance their relevance for the case study (i.e.,
making sure they are directly or indirectly linked to the environmental
processes conditioning these soil properties) but also their availability
and cost. Following this rationale, thirteen freely available covariates
were selected (Fig. 4 and Section 3.3). These included climate (average
rainfall and temperature), land use, soil units, soil texture, parent ma-
terial, and terrain attributes (elevation, slope and aspect). All of these
covariates are commonly used for digital soil mapping based on the
scorpan model proposed by McBratney et al. (2003) (which partly
comprises the most dominant factors of soil formation proposed by
Jenny, 1941). A desertification susceptibility index was further in-
cluded with the intention of describing the combined effects of climate,
soil and time to evaluate if the process of desertification is likely to
occur. The details of the covariates used as continuous and categorical
predictor variables are described below:

• The climate variables (rainfall (mm; range: 263.5–2190 mm) and
temperature (°C; range: 9–17 °C)) were provided by the “Grupo de
Previsão Numérica do Tempo” (Instituto Superior Técnico; meteo.
tecnico.ulisboa.pt/) and refer to average climate simulations for
mainland Portugal for the period 1979–2009 using the numerical
mesoscale model MM5 forced by the initial conditions from “The
NCEP Climate Forecast System Reanalysis”, at a spatial resolution of

9 km.

• The terrain attributes were obtained using the digital elevation
model (DEM; range: 0–1990 m) provided by the European
Environment Agency (DEM over Europe, 2013; www.eea.europa.
eu/data-and-maps/data/eu-dem) based on the NASA Shuttle Radar
Topography Mission and ASTER imagery, with a spatial resolution
of 25 m. DEM pre-processing and deriving slope and aspect were
carried out using the software ArcGIS 10.2.2 (ESRI, 2014).

• Land use was extracted from the European CORINE Land Cover map
produced and validated for 2006 (www.eea.europa.eu/data-and-
maps/data/corine-land-cover-2006-raster/#parent-fieldname-title).
The CORINE Land Cover inventory is based on automatic or semi-
automatic classification of satellite imagery (for 2006, SPOT-4/5
and IRS P6 LISS III dual date) to provide a map comprising 44 land
use categories, grouped in 5 broad classes (artificial surfaces, agri-
cultural areas, forest and semi natural areas, wetlands and water
bodies) at a spatial resolution of 250 m. The most represented land
use classes in Portugal were class 2 (agricultural areas) and class 3
(forest and semi natural areas, namely transitional woodland-
shrub).

• Parent material referred to the main geological units provided by
the national environment agency (sniamb.apambiente.pt/infos/
shpzips/AtAmb/AtAmb_1013111_CLitologica_Cont.zip) within the
project “Atlas do Ambiente”, which aims to make available geo-
graphic information at the national scale (1:1000000), useful for
environmental thematic mapping. Parent material data was pro-
vided as a vector layer which was converted to a raster with 1 km
spatial resolution, using the conversion tools within ArcGIS 10.2.2
(ESRI, 2014). The most represented geological units in mainland
Portugal were sedimentary and metamorphic rocks.

• Soil units and soil texture were obtained from the European Soil
Database (ESDB) v2.0. (van Liedekerke et al., 2006; Panagos, 2006;

Fig. 4. Covariates for spatial modelling.
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Panagos et al., 2012), which provides raster data for 73 soil attri-
butes with a spatial resolution of 1 km (esdac.jrc.ec.europa.eu/
content/european-soil-database-v2-raster-library-1kmx1km). Soil
units used in this study corresponded to soils classified according to
WRB (IUSS Working Group, 2006). ESDB soil texture refers to the
dominant surface textural class. According to this source, soils in
Portugal were mostly coarse (< 18% clay and> 65% sand). Soil
texture mapped at the national scale was also used as a covariate.
Clay, silt and sand contents were predicted using INFOSOLO data
and a kriging-based algorithm (ordinary kriging) as explained in
Section 2.4.2.

The desertification susceptibility map is the end-product of a
European Space Agency (ESA) research project aiming at “developing a
user-oriented Information System based on Earth Observation tech-
nology to support national and local authorities in responding to the
reporting obligations of the United Nations Convention to Combat
Desertification (UNCCD) and in monitoring land degradation trends
over time” (www.melodiesproject.eu/node/36). Desertification sus-
ceptibility aims to capture desertification dynamics using a spatial in-
ference method that combines a climatic component (using ECMWF -
European Centre for Medium-Range Weather Forecasts precipitation
data) and biophysical components such as land use, NDVI (Normalized
Vegetation Index) and soil brightness (derived from SPOT imagery).
The index varies between 0 and 1; higher values indicate a dynamic
drift towards the advancement of desertification processes, which can
be seen as a proxy for soil OC (indication of low OC content). The data
available for this study referred to the susceptibility index calculated for
2005.A non-spatial approach was adopted to identify which environ-
mental covariates were likely to be related with the measured OC, pH
and CEC values. This approach used the machine-learning algorithm
RandomForest (Breiman, 2001; Liaw and Wiener, 2002), as im-
plemented in the R package randomForest (version 4.6–12, Liaw and
Wiener, 2002). RandomForest can be described generally as using an
ensemble of decision trees to predict new values at unsampled locations
by exploring linear and non-linear relationships between variables, but
not using spatial autocorrelation. According to Grimm et al. (2008), the
RandomForest algorithm is suited for soil modelling due to its flexibility
in using both categorical and continuous predictors and its ability to
model high dimensional non-linear relationships avoiding overfitting.
One of the outputs provided is a measure of how each covariate con-
tributes to prediction accuracy. Covariance importance is quantified in
terms of the variance of the out-of-bag predictions, which gives a
measure of prediction accuracy (i.e., the mean square error obtained
when predicting a subset of original data, not used in the training
process, using the corresponding bootstrapping training tree (Svetnik
et al., 2003)). This feature was used in this study for a preliminary
analysis of relevant environmental covariates.

2.4.2. Spatial modelling
Spatial modelling was performed using two kriging based algo-

rithms, which differ formally in terms of incorporating or not additional
data (covariates) to predict new values at unsampled locations.

The first of the modelling approaches followed the DSM framework
and used an empirical best linear unbiased predictor (EBLUP) in-
corporating the covariates through a linear mixed model (Lark et al.,
2006; Lark, 2012). This DSM approach is commonly applied in soil
science studies (Johnson et al., 2017; Li et al., 2015, 2016; Bishop et al.,
2015; Oliver and Webster, 2014; Grunwald, 2009; Chai et al., 2008;
Minasny and McBratney, 2007). A comprehensive explanation of linear
mixed models (LMM) applied to DSM are well described in the recent
work by Karunaratne et al. (2014) and Bishop et al. (2015), and are
detailed in Lark et al. (2006) and Nelson et al. (2011).

LMM's can be presented as a model able to predict OC, pH and CEC
by building a linear relationship between sampled values and a set of
covariates (called fixed effects, which can be interpreted as a physical

trend). The values of the covariates at each sampling location were
found by spatial coincidence and without changing its spatial resolution
(Bishop et al., 2015). The actual covariates used as fixed effects were
different for each soil property and for each dataset, and were selected
using backward elimination incorporating the Aikaike's Information
Criterion (AIC) which determines their statistical significance (p-
value < 0.05) to predict the specific attribute.

For continuous covariates, a preliminary analysis looked at the data
distribution and the linear correlation among covariates, and between
these covariates and OC, pH and CEC. Regression analysis was used to
identify values in the distribution that had high leverage, and hence
could affect the fitting of a linear model as required in further spatial
modelling. Log-transformation was applied to reduce leverage influence
when judged necessary. For categorical covariates (land use, soil units,
soil texture at the European scale, and parent material), classes were
reclassified or merged with a similar class if the number of observations
extracted was below 15. When used for spatial modelling, each class in
the categorical predictor variable was transformed into dummy vari-
ables, i.e., a binary indicator variable which is one (1) when a given
class is present at a location and zero (0) otherwise (Samuel-Rosa et al.,
2015).

Since the fixed effects contribution might not be enough to explain
the variability observed for each property, the residuals (or random
effects) from the regression model using the trend (fixed effects) were
also calculated for each sampling point. For the spatial model to be
worth using instead of solely using the spatial trend model, the re-
siduals must be spatially correlated. The advantage of using the EBLUP
approach with LMM's is that it allows to calculate simultaneously the
regression relation between the soil property and the fixed effects, and
the variogram of the residuals from that regression by residual max-
imum likelihood (REML) (Lark et al., 2006; Lark, 2012). Hence, the
EBLUP predicted value incorporates both the contribution of the trend
and the spatially correlated residuals. Moreover, using REML to fit the
residuals variogram minimizes the bias in the predictions due to un-
certainty in the estimated fixed effects coefficients (Johnson et al.,
2017; Lark, 2012).

An important implication of using LMM's is the assumption of data
normality. Whenever necessary, data transformation using the loga-
rithmic function was used and predictions were back-transformed
(using the lognormal probability density function suggested by Webster
and Oliver, 2007) to produce the final predicted map. This was per-
formed for OC and CEC modelling.

The second modelling approach used ordinary kriging (OK) to
evaluate the importance of including covariates to predict OC, pH and
CEC. This linear unbiased predictor assumes spatial stationarity and
uses the raw data to produce local predictions based on spatially
weighted neighbourhood data (Isaaks and Srivastava, 1989).

Ordinary kriging was also applied to predict the clay, silt and sand
content at the national scale (1 km spatial resolution) using the
INFOSOLO texture data. Although potentially introducing uncertainty
due to the spatial model adopted to predict clay, silt and sand, we
considered it was important to include these as covariates to predict
OC, pH and CEC, not only due to their importance in explaining the
variability of these soil properties at the national scale but also to
complement the available European texture maps which represent
broad classes at a global scale.

For both EBLUP and OK modelling, the dataset was firstly separated
into calibration and validation subsets chosen randomly from the raw
data. The calibration subset was used to create and test the spatial
model for prediction whereas the validation subset was used for in-
dependent validation of the spatial model predictions (Section 2.4.3).
Our validation subset comprised 40% of randomly chosen data values.

After the calibration and validation steps, the full dataset was used
as input data for EBLUP and OK prediction of OC, pH and CEC, con-
sidering a 1 km spatial resolution grid covering Portugal.

The R software, namely the packages geoR (Ribeiro and Diggle,

T.B. Ramos et al. Catena 158 (2017) 390–412

397

http://esdac.jrc.ec.europa.eu
http://www.melodiesproject.eu/node/36


2001) and gstat (Pebesma, 2004) were used for modelling, validation,
and prediction. The final maps were processed in ArcGIS 10.2.2 (ESRI,
2014).

2.4.3. Model validation and comparison of spatial modelling outputs
Both kriging-based approaches used in this work relied on a spatial

model for prediction of soil properties. In the OK modelling approach,
this spatial model was derived by fitting a known function to the raw
data experimental variogram whereas with EBLUP it was the result of
combining the contribution of fixed and random effects. Although for-
mally different, both spatial models predicted a new value for each grid
location where no data was available. To test the accuracy of the spatial
model in predicting new values, the full dataset was firstly divided into
a calibration subset used to create the spatial model, and into a vali-
dation subset used for statistically compare the spatial model predic-
tions with true (sampled) value.

Using the calibration dataset, leave-one-out cross-validation
(LOOCV) was performed to measure the fitting performance of the
spatial model (i.e., to evaluate how similar were the predictions and the
correspondent true value used to create the model). LOOCV works
simply by removing a data point from the dataset and predicting its
value by kriging using the remaining data and the proposed spatial
model. The process makes sure that each and every one of the n data
points is omitted in turn from the dataset (Oliver and Webster, 2014).

Independent validation was also carried out using the spatial model
for predicting soil properties at the locations included in the validation
subset and for then measuring the prediction accuracy (i.e., the de-
viation between the predictions and the true value observed at locations
“new” to the model).

The comparison between the predicted and true values can be
summarized statistically using the mean error (ME) and the root mean
square error (RMSE). Both provide a measure of prediction accuracy at
each sampled location although not guaranteeing the same accuracy in
the final predicted map. The ME always provides a value close to 0 since
kriging-based algorithms are unbiased even when the spatial model is
not adequate (Oliver and Webster, 2014). Hence, only the RMSE was
used to compare the EBLUP and OK modelling outputs using the IN-
FOSOLO and LUCAS datasets. Kriging should minimize the RMSE;
therefore, larger RMSE values indicate less accurate predictions given
by the spatial model.

Kriging-based algorithms also aim at minimizing the local error
variance. For validation purposes it is important to guarantee that the
prediction variance obtained using the spatial model accurately reflects
the prediction errors. This can be measured using the squared stan-
dardized prediction error (SSPE), defined as (Lark, 2000):

=
− ′

θ(x) ((z(x) z (x))
σ (x)

2

2 (1)

where θ(x) is the SSPE at location x, z(x) and z′(x) are, respectively, the
true and predicted value at location x, and σ2(x) is the prediction var-
iance derived by the spatial model at location x. If the correct spatial
model is used, the mean θ(x) will be close to 1, and the median θ(x)
close to 0.455 (Lark, 2000). These θ(x) reference values were used to
compare the EBLUP and OK modelling outputs using the INFOSOLO
and LUCAS datasets.

Besides using validation statistics, we mapped the relative differ-
ence between INFOSOLO and LUCAS predictions to quantify the de-
viations between the two maps. A qualitative comparison based on
expert knowledge was also included to ascertain map quality given the
pedological knowledge of Portuguese soils.

The final national OC, pH and CEC predicted maps were judged
based on its accuracy and pedological value, and were further com-
pared with the digital soil maps currently available for Portugal,
namely, the SoilGrids product (Hengl et al., 2017). Although SoilGrids
was produced at a global scale using a different modelling approach,

the comparison with the national maps produced for OC, pH and CEC
was considered relevant to discuss the importance of incorporating le-
gacy datasets using local (national) customized modelling approaches.

3. Results and discussion

3.1. Soil information

Fig. 1 shows the sampling effort throughout Portugal, of which a
significant part was concentrated in Minho and southern Alentejo re-
gions; the former mostly as a result of soil survey (Agroconsultores and
Geometral, 1999), while the latter were studies carried out by different
institutions over the last decades, most with the objective of assessing
the impact of irrigation on soil properties (e.g., Divisão de Solos, 2003;
DGADR, 2007; Gonçalves et al., 2006; Ramos et al., 2011, 2012).
During the 2000's, the sampling points were more evenly distributed,
covering the entire country. This was mainly due to the sampling
campaign performed in 2009 for the European Union (EU) soil mon-
itoring program LUCAS (Tóth et al., 2013b), which is also included in
INFOSOLO. In most recent years (from 2010 to 2014), the sampling
effort has decreased, with most of the 215 points being located in the
south.

Cambisols (18.3%), Regosols (17.1%), Anthrosols (12.7%), and
Luvisols (8.3%) were those most represented in the database (Table 2),
which is partially explained by the distribution of the soil profiles
throughout the country. The large percentage of Cambisols and Re-
gosols reflected the country's orography, namely the mountainous
north; Anthrosols reflected mostly the long term anthropogenic activ-
ities carried out (e.g., ploughing, terracing, fertilization, liming), for
example, in Minho; and Luvisols appeared mostly in the gently sloping
landscape in the south, where the climate is dry sub-humid to semi-arid.

The parent material information also reflected the country's di-
versity, where igneous rocks (29.7%), unconsolidated deposits (23.1%),
and metamorphic rocks (15.6%) were the most represented (Table 3).
Granite and schist appeared dominantly in the north and central Por-
tugal, while schist, gneiss, and limestone were found mainly in the
south.

Most soil profiles were studied in areas under fallow or other non-
productive areas (17.7%; Table 4). Areas with irrigated arable crops
such as maize (13.4%), and rainfed arable crops such as annual winter
cereals (11.9%) also stood out.

Table 5 describes the physical and chemical soil properties of the
different horizons/layers included in the database. Soil texture data was
more clustered within the coarse and medium texture classes of the
ternary diagram, although the fine texture classes were also well re-
presented (Fig. 3). The exceptions were the regions of the texture tri-
angle where Si > 70% and C > 80%.

3.2. Spatial and temporal distribution of soil properties

3.2.1. Exploratory data analysis
The spatial distribution of OC, pH and CEC content recorded in the

INFOSOLO database for the topsoil layer is displayed in Fig. 5 and the
corresponding histograms are shown in Fig. 6. Accounting for all topsoil
values measured from 1966 to 2014, all three soil properties present
positive skewed distributions (more pronounced for OC). The mean OC
content was 2.2% (considered “high” by Dias, 2000), which could be
the result of the highly sampled north region where the OC content
tends to be greater compared to the rest of the country (Fig. 5). Overall,
OC spatial distribution matched what is expected for Portugal due to its
geography and climate: high values located in the NW corner (low
temperature and high rainfall) whereas low OC values characterize the
south (higher temperatures and mineralization rates) and the NE region
(larger temperature ranges). Regarding pH, low values (Costa, 1979)
were concentrated in the north and central regions whereas alkaline
values were mostly concentrated in the south. For CEC, high values
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seemed to be more predominant in the south region matching the
spatial cluster observed for high pH.

Comparing the national distribution for the three variables (Fig. 5),
the greatest OC content was associated with low pH values mostly in
the north, in contrast with the south where low OC values were paired
with high pH and CEC values. It is important to note the pattern in the
NE corner where low OC contrasted with the high predominant OC
values observed in the NW corner. Interestingly, these low OC values
also matched low pH and CEC values. This can be attributed to the
differences in terms of climate, topography, and land management
found between NW and NE regions. In Minho (NW region), air

temperature amplitudes are smoother due to the regulating effect of the
Atlantic Ocean; mean rainfall is the greatest in the country (ranking
among the greatest in Europe) due to the air circulation patterns across
the Atlantic and cloud condensation when reaching the local moun-
tainous relief; and land is mostly divided in small holdings which soils
have been enriched by agriculture practices carried out over centuries
(thus, the large amount of Anthrosols found in this region). On the
other end, in Trás-os-Montes (NE region), air temperatures amplitudes
between seasons are much wider, with cold winters and hot summers
which enhance soil mineralization rates.

Although sampling was not collocated (thus not indicative of a

Table 5
Statistical description of the physical and chemical soil properties included in the database.

Soil property N Mean St. Dev. Maximum Minimum Skewness Kurtosis

Coarse elements (%) 8353 19.2 16.4 87.7 0.0 0.98 0.84
Coarse sand (%) 9934 33.0 19.2 99.0 0.0 0.48 −0.02
Fine sand (%) 9934 32.4 12.6 87.4 0.3 0.50 0.44
Silt (%) 9934 18.4 9.7 68.6 0.0 1.12 2.15
Clay (%) 9934 16.2 12.5 85.5 0.0 1.63 2.50
Bulk density (g cm−3) 1521 1.51 0.21 1.94 0.91 −0.45 −0.21
Organic carbon (%) 8074 1.47 1.57 24.19 0.00 2.61 13.49
N (g kg−1) 6386 1.30 1.08 13.18 0.01 1.74 6.28
P (mg kg−1) 5883 31.2 69.37 2816.0 0.0 15.5 496.1
K (mg kg−1) 5908 84.7 76.78 1019.4 0.0 3.23 20.09
pH (−) 9732 5.8 1.1 9.9 3.4 1.11 0.35
CaCO3 (%) 9658 1.4 7.2 97.6 0.0 6.76 52.50
Exchangeable cations:
Ca2+ (cmolc kg−1) 8310 4.61 7.14 55.9 0.0 2.81 9.09
Mg2+ (cmolc kg−1) 8312 1.56 2.82 42.4 0.0 3.36 17.42
K+ (cmolc kg−1) 8257 0.14 0.15 2.6 0.0 3.89 28.13
Na+ (cmolc kg−1) 8338 0.27 0.89 27.3 0.0 12.37 224.73

CEC (cmolc kg−1) 8880 13.57 8.91 65.3 0.1 1.49 2.95
V (%) 8252 40.8 34.4 100.0 0.0 0.61 −1.11
Theta_FC (cm3 cm−3) 9934 0.253 0.067 0.475 0.057 −0.07 1.46
Theta_WP (cm3 cm−3) 9934 0.126 0.062 0.334 0.014 0.95 0.61

CEC, cation exchange capacity; V, base saturation; Theta_FC, soil water content at field capacity; Theta_WP, soil water content at the wilting point.

Fig. 5. Spatial distribution of INFOSOLO topsoil data (OC, pH, CEC, clay, silt and sand).
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temporal trend), there was a clear distinction among the range of OC
content sampled in each region throughout time (Fig. 7). OC content
was greater in the north and lesser in the south (with less variability
among years and therefore locations). Regarding pH and CEC (Fig. 7),
the highest values and variability characterized the south whereas the
north and central regions presented the same pattern (with lower values

and less variability).
In terms of how topsoil texture (Fig. 5) correlated with topsoil OC,

pH and CEC, no significant global correlation was found between OC
and texture for the three regions. pH and CEC were positively correlated
with clay, and negatively correlated with sand in the south region. CEC
presented a slightly positive correlation with clay in the north region.

Fig. 6. National and regional histograms for OC, pH and CEC (comparison between INFOSOLO and LUCAS).

Fig. 7. Regional variability of INFOSOLO OC, pH and CEC.
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Regarding the comparison between INFOSOLO and LUCAS, the box-
plots in Fig. 7 show that the 2009 sampling captured the OC and CEC
(but not pH) variablity measured for all the other years included in
INFOSOLO in all regions.

Fig. 6 further compares the regional and national INFOSOLO and
LUCAS histograms and basic statistics for topsoil OC, pH and CEC. The
mean and median values characterizing both distributions did not differ
greatly except for CEC. For this soil property, the LUCAS dataset in-
cluded lower values and failed to represent the medium/higher values
represented in the INFOSOLO. The predominance of lower CEC values
in the LUCAS data was also noticeable in the histogram data distribu-
tion (namely for the north and central regions). For OC and pH, the
national histograms showed that lower OC and pH values were less
represented in the LUCAS dataset. Although this analysis highlighted
only CEC distribution to be different for both datasets, the results of the
two-sample Kolmogorov–Smirnov indicated that the INFOSOLO and
LUCAS data distributions were statistically different for all soil prop-
erties under study.

A final note from this initial data analysis of the INFOSOLO dataset
to stress the fact that, although sampling was done throughout time
(from 1966 to 2014), locations were not revisited which makes the
sampling year a proxy for location. This could be a limiting factor when
using spatial modelling to characterize OC spatial patterns since OC
content is likely to change substantially at the short scale and over time
depending, for example, on changes in land use or farming practices
(Franzluebbers, 2009).

3.2.2. Spatial continuity analysis
Fig. 8 compares the standardized experimental variograms obtained

for the INFOSOLO and LUCAS datasets. Overall, the regional pattern

presented by LUCAS was more erratic than the INFOSOLO pattern. The
best visual match between experimental variograms was obtained for
the central region for the three soil properties. For this specific region,
long range continuity was found up to 40 km (OC), 80 km (pH), and
50 km (CEC). Also, there seemed to be a preferential spread in the
north-south direction, with consistent high values measured for OC and
CEC, and low values measured for pH, which could explain this con-
tinuity pattern.

In the north region, the variograms showed a continuous increase of
the variance above the sill (more obvious for INFOSOLO). Possibly,
spatial autocorrelation was controlled by other factors, for example,
topography, rainfall, temperature, and land use (Fig. 4), which clearly
defined a separation between the NE and the NW sides in the north
region. In the case of OC content, very high to high values dominated
the NW side whereas low values were measured in the NE.

In conclusion, no significant differences were found between the
two datasets in terms of describing the regional and national spatial
continuity patterns. However, the regional experimental variograms
obtained with the INFOSOLO dataset presented a clear spatial con-
tinuity pattern for OC, pH and CEC when compared with the vario-
grams calculated using LUCAS.

Comparing the regional (local) with the national (global) vario-
grams, we concluded that, for OC, the global variogram was re-
presentative of the spatial correlation observed for each region. For pH,
the global variogram was affected by an overestimation of the variance
due to the cluster of higher values in the south region. This was more
evident in the INFOSOLO data (Fig. 5) but it also affected the variogram
calculated for LUCAS pH. For this soil property, it was thus necessary to
correct the variance to estimate the sill for spatial model fitting when
modelling pH using raw data and ordinary kriging. For CEC, although

Fig. 8. National and regional spatial continuity analysis for OC, pH and CEC (comparison between INFOSOLO and LUCAS).
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the global variogram was not as well behaved as the OC one (probably
also due to the cluster of high CEC values in the south region) it was
considered stationary and thus used to describe CEC continuity at the
national scale.

3.3. Mapping of additional covariates (national soil texture)

A decision was made to include the soil texture data (clay, silt, and
sand content) available in the INFOSOLO dataset, sampled for the same
locations as OC, pH and CEC (Fig. 5), as part of the covariates used for
modelling. As these texture data needed to be available as a continuous
grid, ordinary kriging was used to interpolate clay, silt and sand to
create 1 km resolution maps (Fig. 9).

Finding the appropriate spatial model for prediction proved to be
straightforward for silt and sand (both fitted with a spherical model),
resulting in continuity ranges of 125 km and 85 km, respectively. For
clay, log-transformation was necessary to avoid a pure nugget effect
model. The experimental variogram was then fitted with a Matérn
model which estimated a 25 km continuity range. All estimated ranges
are adequate to explain the spatial distribution of these texture prop-
erties considering the scale involved in this study. Independent vali-
dation results (obtained as explained in Section 2.4.3) were similar for
all spatial models and showed small RMSE values, median θ(x) value
close to 0.45, and the mean θ(x) value slightly above 1. Based on these
results, we considered the spatial models adequate for prediction of
clay, silt and sand.

The predicted maps obtained for clay, silt and sand also captured
the trend expected for Portugal, namely, the clay and sand distribution
in the south, and the spatial distribution of silt areas generally in the
south region and locally in areas in the left margin of the Tagus River
and in the Mondego river catchment. These spatial trends generally
aligned with the results presented in Ballabio et al. (2016), which used
the LUCAS dataset to predict topsoil texture at the continental scale
although more detail was added in our maps most likely due to the
nature of the data and the spatial model used.

3.4. Spatial modelling of soil properties at the national level

3.4.1. Spatial modelling integrating environmental covariates
3.4.1.1. Covariates importance. The environmental covariates presented
in Section 2.4.1 were used to create the trend component for predicting
OC, pH and CEC using the EBLUP spatial modelling approach.
Covariance importance obtained using RandomForest determined
average rainfall as the most important variable to explain OC
variability using both INFOSOLO and LUCAS. Additionally, elevation
and silt were also highlighted for the INFOSOLO dataset. Clay was the
most important covariate explaining pH and CEC variability using both
datasets. For these soil properties, other covariates were indicated as
relevant when using the LUCAS dataset, namely, parent material and
desertification for pH, and sand for CEC. The analysis of covariance

importance suggested that, from the initial set of covariates, only few of
them were likely to contribute to explain OC, pH and CEC variability
from which soil texture at the national scale was likely to be the most
relevant.

3.4.1.2. Model calibration. The environmental covariates selected to
predict OC, pH and CEC were similar to the covariance importance
results. The final predictors determined for INFOSOLO OC were clay,
silt, average rainfall and elevation (with a residual contribution)
whereas for LUCAS OC the statistically significant predictors were
average temperature, silt, average rainfall and elevation (also with a
residual contribution). For INFOSOLO pH, the predictors with a larger
contribution to the model were fine soil texture and soil type with silt,
clay, average temperature and average rainfall also selected. For LUCAS
pH, the final covariates included the parent material (sedimentary
rocks), sand and silt, with climate covariates contributing residually.
The results for INFOSOLO CEC indicated clay as the covariate with the
largest contribution to the model followed by sand, silt, average
temperature, and rainfall (with residual contributions). These results
were similar for LUCAS CEC, with clay being again the covariate with
the largest contribution followed by sand and average rainfall. The
estimated fixed effect terms for the EBLUP spatial models used to
predict OC, pH and CEC using both datasets are depicted in Table 6.

Comparing both datasets, the predictors selected for LUCAS OC
(namely average temperature and silt) were statistically more sig-
nificant than the ones contributing for modelling INFOSOLO OC, which
indicates that the predictions based on this spatial model will rely on
the contribution of the spatially correlated residuals. For pH, there were
no differences in terms of the magnitude of the modelled regression
coefficients but the significant predictors were soil texture and soil type
for INFOSOLO, and parent material for LUCAS. A similar analysis was
done for CEC but, for this soil property, clay was the most significant
predictor for both datasets.

The significant predictors for each soil property were then used to fit
omnidirectional variograms to the calibration subsets. The Matérn
function (a generalization of several theoretical variogram functions
incorporating a smoothness parameter; Minasny and McBratney, 2005)
was chosen as the suitable model for REML fitting. The estimated var-
iogram parameters are presented in Table 7. Results showed that, re-
gardless the dataset considered, spatial correlation existed up to 25 km
for OC, and 15 km for pH and CEC. The Nugget to Sill ratio (NSR) in-
cluded in Table 7 was below 25%, which indicates that the model was
able to capture spatial correlation reasonably well even for shorter
distances (Cambardella et al., 1994).

3.4.1.3. Model validation. Table 9 summarizes the independent
validation statistics obtained when using the EBLUP spatial model.
These results showed small RMSE values with similar magnitudes for
both INFOSOLO and LUCAS. Regarding the median θ(x) results, the
spatial model used to predict OC performed poorly regardless the

Fig. 9. National soil texture maps (clay, silt and sand).
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dataset used. Nevertheless, mean θ(x) was very close to 1.0, which can
be interpreted as a relatively good model fit for OC (Johnson et al.,
2017). For the other soil properties, the mean θ(x) was also close to 1
and the median θ(x) close to 0.455, with the best results obtained for
independent validation using the LUCAS spatial model.

3.4.1.4. Predicted maps. Following the validation results, the spatial
model was used to obtain the EBLUP OC, pH and CEC, using the
INFOSOLO and LUCAS datasets. The national 1 km resolution maps are
presented in Figs. 10, 11, and 12 (referred to as “Covariates”). A
summary of the EBLUP values is presented in Table 10. Compared with
the data distribution statistics presented before for the sampled OC
(Fig. 6), the statistics for the INFOSOLO EBLUP predictions were closer
to the experimental data, in terms of the mean, median and standard
deviation. For pH and CEC, the statistics describing the distribution of
the EBLUP predicted values were very close to the statistics for the
experimental data, regardless the dataset considered.

3.4.2. Spatial modelling without environmental covariates
3.4.2.1. Model calibration. As part of the process to present the most
accurate map for OC, pH and CEC spatial distribution, a second
modelling approach which excludes the contribution of
environmental covariates was tested. For this approach, the spatial
model was derived from the raw data and the predictions were obtained
using ordinary kriging (OK).

The experimental omnidirectional variogram obtained for the cali-
bration subset (not substantially different from the national variograms
presented in Fig. 8) was fitted with an exponential model using a
weighted least squares criteria (Webster and Oliver, 2007). This spatial
model was deemed the most parsimonious to describe spatial con-
tinuity. The corresponding parameters of the variogram models are
presented in Table 8. Results showed that OC and CEC models de-
termined greater continuity ranges for the INFOSOLO dataset when
compared to the ranges obtained for LUCAS (around 15 km difference
between ranges). The nugget effect was significant in the CEC model,
but negligent for OC. In spite of the modelling efforts, the spatial model
for pH delivered considerably low continuity ranges using both IN-
FOSOLO and LUCAS, thus not being able to provide a model for

distances above 2 km.

3.4.2.2. Model validation. Table 9 summarizes the validation statistics
obtained when using the OK spatial model with the calibration and
independent validation subsets. The results for independent validation
showed that the RMSE values had the same magnitude for both
INFOSOLO and LUCAS subsets, and were greater for OC validation
but acceptable for pH and CEC. Overall the mean and median θ(x)
results diverted from the reference values and indicated that the spatial
model used to predict OC, pH and CEC performed poorly regardless the
dataset used. This was expected for pH but also confirmed for OC and
CEC in spite of reasonable model fitting performance based on the
median θ(x) results obtained for the calibration dataset.

3.4.2.3. Predicted maps. The national 1 km resolution maps displaying
OK predicted OC, pH and CEC values are presented in Figs. 10, 11, and
12 (referred to as “Without Covariates”). A summary of the OK
predicted values is presented in Table 10. Compared with the data
distribution statistics presented before for the sampled OC (Fig. 6), the
statistics for the INFOSOLO OK predictions were closer to the
experimental data in terms of the mean, median, and standard
deviation. For pH and CEC, the variability in the predicted data
distribution was lower compared to the experimental data for both
datasets.

3.4.3. Comparison of spatial modelling outputs
3.4.3.1. Comparison of EBLUP and OK approaches. Based on the
independent validation statistics, the EBLUP spatial model described
more accurately OC, pH, and CEC variability. The differences between
EBLUP and OK were more evident for pH and CEC likely due to the fact
that the spatial model incorporating the covariates was able to better
capture pH and CEC variability at the national level compared to the
spatial model using raw data. As noted before for the spatial continuity
analysis, the global variogram obtained with pH and CEC data was
affected by the high values sampled for these properties in the south
region.

We have also calculated the prediction variances and, as expected,
EBLUP variances were generally lower than the ones obtained for OK.
Additionally, the variance pattern for OK matched the sampling con-
figuration, with smaller kriging variances close to the sampling points
and larger variances in the areas where no data existed. These results
and the importance of incorporating soil-related covariates in predic-
tion were reported in other soil science studies (e.g., Chai et al., 2008;
Minasny and McBratney, 2007).

Hence, to further compare the INFOSOLO and LUCAS modelling
outputs we focused on the EBLUP maps presented on Figs. 10, 11, and
12 (referred to as “Covariates”).

Table 6
Summary of estimated fixed effect terms.

Model Regression coefficients

OC pH CEC

INFOSOLO LUCAS INFOSOLO LUCAS INFOSOLO LUCAS

Intercept −1.6 −5.2 5.3 10.4 −4.3 0.7
Avg. rainfall 0.001 0.09 −0.0009 −0.001 0.0006 0.001
Avg. temperature – 0.3 0.05 – 0.0004 –
Elevation 0.0009 0.002 – −0.0008 – –
Clay 0.04 – 0.06 – 0.1 0.6
Silt 0.02 0.3 −0.03 −0.03 0.07 –
Sand – – – −0.05 0.05 0.04
Soil texture (Fine) – – 0.4 – – –
Soil type (Fluvisol) – – 0.5 – – –
Soil type (Umbrisol) – – 0.6 – – –
Parent material (sedimentary rocks) – – – −0.4 – –

Table 7
Summary of the estimated variogram parameters for the spatially correlated residuals.

Parameter OC pH CEC

Dataset INFOSOLO LUCAS INFOSOLO LUCAS INFOSOLO LUCAS

NSR (%) 22 0 8 0 22 4
Distance (km) 25 25 15 15 15 15

T.B. Ramos et al. Catena 158 (2017) 390–412

403



3.4.3.2. Comparison of INFOSOLO and LUCAS. To evaluate which
dataset delivered a reliable representation of OC, pH, and CEC spatial
patterns, we firstly analysed the covariates used in the spatial model
and compared the distribution of high and low values.

Although the EBLUP covariates selected for modelling OC were
different for INFOSOLO and LUCAS, they still related with the same
biophysical variables, namely, climate and soil texture which were
found relevant to explain OC variability in Portugal. As shown in
Fig. 10, the patterns depicted in both INFOSOLO and LUCAS maps
followed the distribution of the sampled values. The broad patterns
were represented the same way with both datasets, namely the contrast
between high and low OC content in the NW and NE regions, and in the
north and south regions. Both maps depicted areas with higher OC

content in the SW corner, in the central region and in the west coast.
However, in the INFOSOLO map, low OC areas (0.3% - 0.9%) had

greater spatial extent namely in the south since low OC values were less
represented in the LUCAS sampling campaign for this region. These
areas of low OC are of great importance since they relate with soil
quality degradation in the south, specifically in the left margin of the
Guadiana River (Rosário, 2004). Also, the spatial patterns for areas with
OC content > 0.9% were contoured differently in the two maps
probably due to the contribution of the covariates (e.g., the patch of
high values stretching from the north to the central region and in the
south end appeared smoother in the LUCAS map).

To quantify the dissimilarity between INFOSOLO and LUCAS pre-
dictions as well as to identify where it occurred, we mapped the relative

Fig. 10. OC national soil map (comparison be-
tween INFOSOLO and LUCAS, and modelling
approaches – EBLUP + covariates prediction
under “Covariates”, kriging prediction under
“Without covariates”).
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difference between the two maps as shown in Fig. 13. The values shown
represent the magnitude of deviations between the LUCAS predicted
value and the INFOSOLO value for that location in the grid. Negative
values indicate greater predicted values for LUCAS whereas a positive
value is obtained when LUCAS predictions are lower than INFOSOLO.
Deviations between 10 and 20% were considered relevant. To display
theses deviations, we have classified the relative difference maps using
the 5, 25, 50, 75 and 95 percentile values.

The differences mapped for topsoil OC showed the highest devia-
tions in the central and north regions (namely in the NW region where
INFOSOLO had a high sampling density). In the south region, devia-
tions were also significant namely the negative deviation in the left
margin of the Guadiana River for which the LUCAS predictions varied

considerably from INFOSOLO. Overall, 80% of the prediction grid area
showed significant deviations between LUCAS and INFOSOLO predic-
tions.

For pH, the selected covariates were also different for INFOSOLO
and LUCAS EBLUP. However, they also represent the same biophysical
variables related to pH variability in the soil (namely, soil texture and
parent material which may be directly related to soil type). Comparing
INFOSOLO and LUCAS maps, it can be seen that the same patterns were
identified representing the changes from low to high values, from north
to south, as displayed in the original sampled data. The cluster of high
values in the south region was well represented with both datasets.
However, the low pH areas had lesser spatial extent in the LUCAS map,
with the patterns depicted with more detail. The relative difference

Fig. 11. pH national soil map (comparison be-
tween INFOSOLO and LUCAS, and modelling
approaches – EBLUP + covariates prediction
under “Covariates”, kriging prediction under
“Without covariates).
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map displayed in Fig. 13 for topsoil pH showed a fairly good agreement
between INFOSOLO and LUCAS predictions (only 25% of the prediction
grid area showed relevant deviations). Pockets of relevant deviations

were observed in the western coastal area, the top north, and also in the
south, specifically in the area identified as a cluster of high values of
clay and carbonate content and with a higher sampling density in IN-
FOSOLO.

Clay was the covariate that most contributed to explain CEC
variability for both INFOSOLO and LUCAS EBLUP, which makes sense
considering that CEC mostly refers to the ionic exchange capacity of
clay minerals. Both maps delivered the same general pattern for CEC,
with low values located preferentially in the west and a cluster of
higher values in the south (in agreement with the sampled data). One of
the main differences in the predicted maps was the patch of high CEC
values depicted only in the central region of the INFOSOLO map. This
was evident in the differences map shown in Fig. 13, which also showed

Fig. 12. CEC national soil map (comparison be-
tween INFOSOLO and LUCAS, and modelling
approaches – EBLUP + covariates prediction
under “Covariates”, kriging prediction under
“Without covariates).

Table 8
Summary of the variogram parameters (raw data).

Parameter OC pH CEC

Dataset INFOSOLO LUCAS INFOSOLO LUCAS INFOSOLO LUCAS

NSR (%) 0.6 0 30 0 44 40
Distance (km) 25.5 10 1.8 1.9 35 18
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an area of relevant deviations in the NW region and western coastal
area due to lower INFOSOLO predictions. These areas presented dif-
ferent sampling densities for LUCAS and INFOSOLO, and the western
area was less sampled in both datasets which explains the consistent
deviations found for all soil properties.

3.4.3.3. Expert evaluation. It is also relevant to interpret the INFOSOLO
and LUCAS EBLUP maps using expert knowledge to evaluate, from a
pedological perspective, the quality of the predicted OC, pH, and CEC
spatial patterns.

Based on expert interpretation of the maps presented in Figs. 10, 11,
and 12, we consider that the INFOSOLO EBLUP maps reproduced better
what is expected for the spatial distribution of OC, pH, and CEC in
Portugal. This is particularly true for OC, where the LUCAS maps pro-
duced higher values than the expected for areas in the south, NE, and
western coastal regions. For example, the left margin of the Guadiana
River exhibited high OC values (> 1.8%) in the LUCAS map which are
not in accordance with an area where summer average temperatures
are normally very high, average rainfall is the lowest, and where many
desertification indexes have been pointing out the region as the most
threatened in the country (Fig. 4; Perez-Trejo, 1992; Kosmas et al.,
1999; Rosário, 2004). Furthermore, the INFOSOLO topsoil OC map was
also more in agreement with the ones produced by Jones et al. (2005)
and Lugato et al. (2014), following different modelling techniques. For
pH, the INFOSOLO map represented the lower values (pH < 4.5) more
realistically than the LUCAS map, especially in the north region, but
also in the western coastal area, in agreement with the map produced
by Freitas (1984) (Fig. 14), which grouped soils (20,000 soil samples)
into different pH classes based on their reaction and on the soil asso-
ciations of the Soil Map of Portugal at 1:1000000 scale (Cardoso et al.,
1973). For CEC, the LUCAS and INFOSOLO maps exhibited many si-
milarities. The main difference was the overestimation of LUCAS CEC
topsoil values in the NW region and underestimation in the central
region relatively to INFOSOLO.

3.4.3.4. Comparison with SoilGrids. Finally, Fig. 15 displays the
predicted INFOSOLO EBLUP maps for OC, pH and CEC with the
results presented in Hengl et al. (2017), which provided 250 m
resolution maps for these soil properties but at the continental scale
(SoilGrids product). SoilGrids is currently the only digital soil map
available for Portugal. Hengl et al. (2017) improved the modelling
approach carried out in Hengl et al. (2014) and included additional soil
databases for data analyses, particularly the LUCAS topsoil survey
dataset, which for Portugal provided more coverage than the WISE
dataset used previously. The modelling approach also used the
contribution of covariates to explain the variability of soil properties
and the results indicated climatic and biomass indices (extracted from
satellite imagery), topography, lithology, land cover, and soil type as
the most relevant for global modelling.

Fig. 13 further displays the comparison between INFOSOLO and
SoilGrids (at 30 cm depth) by quantifying the relative differences be-
tween predictions obtained for both maps (using the same procedure
applied to compare INFOSOLO and LUCAS maps). The greatest devia-
tions were obtained for topsoil OC and CEC (SoilGrids predictions
varied considerably from INFOSOLO in 75% and 55% of the prediction
grid area, respectively). Interestingly, SoilGrids deviations from IN-
FOSOLO were opposite to the ones encountered for LUCAS. For ex-
ample, OC deviations were positive in the NW region and in the south.
Differences in OC predictions in the left margin of the Guadiana River
were less pronounced, hinting higher predicted INFOSOLO values. The
deviation pattern in the western coastal area, central region and central
south (matching the cluster of sampled values) was highlighted for both
SoilGrids and LUCAS.

The deviations observed for topsoil pH were scattered along the
country, with small patches of negative deviations from the north to the
central region, and noticeable areas of positive deviations in the south
(namely in in the cluster of high values). For topsoil CEC, the most
significant patch of negative deviations was found in the western
coastal area and the left margin of the Tagus River (which was classified
as a positive deviation in the LUCAS comparison). There was a sig-
nificant deviation patch in the central region, also identified for LUCAS.

The spatial resolution of SoilGrids, but also the modelling approach
and the covariates used, explain why the comparison of SoilGrids with
INFOSOLO was not completely in agreement with the results obtained
when comparing INFOSOLO and LUCAS. However, the INFOSOLO
comparison with LUCAS and SoilGrids highlighted consistently devia-
tions in the top NW region and the western coastal region. Both these
areas were either not sufficiently covered by the latter products, with
the INFOSOLO sampling density being here considerably higher than
LUCAS. There was also a central area in the central region (with low
temperatures and high elevation and slope) which showed differences,
namely for OC and CEC. The sampling cluster in the south also pro-
duced mostly positive deviations (hence higher INFOSOLO predictions)
for the three soil properties, which were evident when comparing
INFOSOLO, LUCAS and SoilGrids maps.

Table 9
Independent validation (EBLUP and OK).

OC pH CEC

INFOSOLO LUCAS INFOSOLO LUCAS INFOSOLO LUCAS

EBLUP:
RMSE 0.63 0.59 0.65 0.68 0.47 0.64
θ(x) (mean) 0.98 0.91 1.10 0.99 1.00 1.00
θ(x) (median) 0.29 0.29 0.34 0.45 0.39 0.46

OK:
RMSE 1.5 1.8 0.83 0.94 0.52 0.77
θ(x) (mean) 1.7 1.3 1.68 1.46 1.5 0.9
θ(x) (median) 0.23 0.26 0.61 0.80 0.52 0.38

Table 10
Summary of the EBLUP and OK predictions.

Model Minimum Maximum Median Mean St. Deviation

EBLUP:
OC (INFOSOLO) 0.08 13.37 1.40 1.96 1.45
OC (LUCAS) 0.54 87.66 3.08 2.01 4.08
pH (INFOSOLO) 4.1 8.5 5.6 5.7 0.68
pH (LUCAS) 3.0 8.3 5.8 5.8 0.67
CEC (INFOSOLO) 2.4 62.7 11.4 12.5 5.65
CEC (LUCAS) 1.3 74.4 11.0 12.3 6.00

OK:
OC (INFOSOLO) 0.16 16.1 1.6 2.0 1.2
OC (LUCAS) 0.3 12.9 2.1 2.6 1.4
pH (INFOSOLO) 4.3 8.4 5.6 5.6 0.3
pH (LUCAS) 4.1 8.5 5.9 5.9 0.17
CEC (INFOSOLO) 2.8 34.2 11.4 12.4 4.9
CEC (LUCAS) 2.1 40.0 12.2 13.0 5.3
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Fig. 13. Comparison of INFOSOLO, LUCAS and SoilGrids (at 30 cm depth) predictions for OC, pH and CEC.

Fig. 14. Comparison of pH maps (validation
using expert knowledge).
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4. Conclusions and future developments

This work presents a comprehensive overview of the INFOSOLO
dataset and highlights the importance of compiling Portuguese soil data
into an unique database to be used as a baseline for future soil man-
agement policies. This work also represents the most comprehensive
effort ever made to organize soil information in Portugal, with the
database currently including physical and chemical characteristics of
9934 horizons/layers studied in 3461 soil profiles across the country.
INFOSOLO was thoroughly validated using a sound process of quality
assurance and harmonization to deliver the most valuable repository of
soil data collected in the past six decades in Portugal.

The number of sampling points included in INFOSOLO is superior to
any other dataset currently available for Portugal, namely, the EU-wide
LUCAS, adding 2932 locations to the 465 LUCAS points sampled in the
country. But to consider INFOSOLO a better alternative to LUCAS, it is
important to compare these datasets starting with the fact that
INFOSOLO sampling did not comply with any statistical design which
was done for LUCAS. This explains the existence of a highly sampled
area in the NW region of Portugal, and of the cluster located in the
central part of the south region (Fig. 1). As a consequence, INFOSOLO
data is characterized by a higher OC content and lower pH in the north
region. Also, in the south, INFOSOLO displays lower OC values. This
specifically is a significant difference between the two datasets since
low OC content characterizes most of the southern Portugal due to its
edapho-climatic characteristics. The INFOSOLO cluster located in the
south also explains the high pH and CEC values not represented in
LUCAS.

Besides sampling density, it is the configuration of the sampling
points that can determine distinctive continuity patterns and this is,
ultimately, the most important aspect to understand the spatial varia-
bility of OC, pH, and CEC. The continuity patterns obtained for
INFOSOLO and LUCAS data are very similar and allow us to conclude
that INFOSOLO and LUCAS datasets are not substantially different.
Hence, in spite of not being the product of a carefully designed cam-
paign, INFOSOLO can be used to produce quality soil information. This

was tested further in this work by conducting spatial modelling using
kriging-based prediction to map the spatial distribution of OC, pH and
CEC at the national level.

The spatial continuity analysis results were an early indication that
the use of soil related environmental covariates could improve spatial
prediction, especially for pH and CEC. Indeed, based on independent
validation, we have concluded that the spatial modelling approach in-
corporating covariates produced a spatial model able to deliver accu-
rate predictions. This conclusion was valid for both datasets and for all
soil properties. Hence, we cannot differentiate INFOSOLO and LUCAS
based on the accuracy of the spatial model used for prediction. But we
can evaluate the similarity between their maps to conclude if using
INFOSOLO is indeed relevant to characterize OC, pH and CEC at the
national level.

Both INFOSOLO and LUCAS maps can reproduce broadly OC, pH,
and CEC variability and, depending on the purpose and the scale of the
study, it wouldn't be relevant which one to use. But the predictions
provided by both maps can be significantly different. Significant de-
viations between LUCAS and INFOSOLO predictions were found to
occur consistently in the north (particularly in the NW region), in the
western coastal area, in the central part of the central region, and in the
south (namely in the area of clustered sampling). In the north, west
coast and in the south cluster, INFOSOLO sampling density is con-
siderably higher than LUCAS which we consider to improve the pre-
dictions, namely, for pH and CEC in the south region. The western
coastal area is unevenly covered by both datasets therefore differences
in predictions are the result of the spatial model used. The central area
in the central region presents specific climate and terrain conditions
(low temperatures and high elevation and slope) likely incorporated
differently in the spatial models, resulting in differences in predictions,
namely for OC and CEC. It is also important to note the deviations
between LUCAS and INFOSOLO in terms of OC prediction. Since
INFOSOLO incorporates lower OC values for the south, the differences
between LUCAS and INFOSOLO predictions are evident, quantitatively
and qualitatively.

Finally, to complete this evaluation, we have also compared our

Fig. 15. SoilGrids digital maps for Portugal.
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INFOSOLO maps with SoilGrids, which maps soil properties at a global
scale using available datasets from different countries. The predictions
for Portugal were derived using LUCAS. Overall, the deviations ob-
served between the two maps were similar to the ones noted for LUCAS.

Hence, based on our evaluation, INFOSOLO is a database capable to
characterize with accuracy the spatial distribution of soil properties and
thus to provide reliable soil information to inform future soil manage-
ment and planning policies. It represents an important step towards the
development of a soil information system in Portugal. Despite that,
there is still much to be done:

• The database must be integrated in a Web-based digital platform
that will make georeferenced soil information and derived soil
properties maps freely available for land managers, scientists, policy
decision makers, and students;

• Other soil properties that may be considered relevant can be easily
included in the database. However, currently such information will
hardly show a reasonable distribution throughout Portugal since the
database holds already the most common soil properties found in
the available literature;

• Soil profiles descriptions can also be included in the database. But,
like for soil data, the quality of soil descriptions varies between
studies. Also, most of the existing descriptions show subjective and
qualitative criteria which are difficult to harmonize;

• The soil information obtained using different methodologies need
most likely also to go through a harmonization process. Weynants
et al. (2013) described the harmonization process carried out in the
EU-HYDI. A similar process may prove also to be necessary in IN-
FOSOLO, particularly for soil organic content which was determined
using seven different methodologies. However, the conversion fac-
tors used to harmonize organic carbon content in Weynants et al.
(2013) should be carefully revised since they were developed for
very different edapho-climatic regions;

• The considerable amount of soil information still available in
Portuguese Universities and Polytechnics dedicated to soil science
should also be included in the database. Currently, data from these
institutions reaches merely 2.6% of the database content, with most
being found online;

• The covariates used for modelling show that it is possible to build a
spatial model to be used in the future with minimum requirements
for sampling. This, together with the regular updating of the
INFOSOLO dataset will make it possible to provide up-to-date and
accurate soil information. A soil monitoring program aiming to
validate future predicted maps should be incorporated in the mod-
elling effort;

• There is also the need to produce maps for the subsoil horizons/
layers, for the remaining soil properties included in the database
(e.g., total N, extractable P, extractable K, and CaCO3 content), as
well as derived properties (e.g., available water capacity);

• Finally, INFOSOLO is just a first step into valuing and preserving
national legacy soil data. This should be an on-going effort at the
research and governmental level to ensure the preservation of
Portuguese soils.

The database offers a large potential to provide solutions for dif-
ferent regional and national environmental challenges, namely for
counteracting soil degradation at different scales, for improving wa-
tershed management, for assessing the role of soils in climate change
mitigation, and for valuing soil ecosystem services. It is also a con-
venient mean of educating students, providing the opportunity of
handling a large quantity of new and reliable soil information, and
studying the relationships between soil quality, climate, topography,
and land management in different regions in the country.

While the database represents a first step towards the development
of a much needed modern soil information system in Portugal, it will
require the combined effort of many more soil scientist in order to

improve the quality of the data available, its distribution throughout
the country, and the quality of related outputs, namely, the soil maps
produced. Nonetheless, the database is an important tool for raising
awareness of the general public, land users, stakeholders, and policy
decision makers about the importance of soils as natural resources and
their relations to human welfare and sustainability.
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